Libmarpa

Version 9.0.3
23 June 2022

Jeffrey Kegler

This manual (23 June 2022) is for Libmarpa 9.0.3.
Copyright (©) 2022 Jeffrey Kegler.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

Published 23 June 2022 by Jeffrey Kegler

Table of Contents

1 Nowarranty 1
2 About this document 2
2.1 How to read this document L. 2
2.2 PrerequiSites 2
2.3 Parsing theory....... ... 2
2.4 Terminology and notation i, 2
2.4.1 Application and diagnostic behavior........................ 3

3 About Libmarpa................................. 4
4 Architecture.............. 5
4.1 Major objectsot e 5
4.2 Time obJects ..ot 5
4.3 Reference counting 6
4.4 Numbered objectso 6

5 Input....... . 7
5.1 Earlemes 7
5.1.1 The traditional input model................. 7

5.1.2 The latest earleme........ ..o 7

5.1.3 The current earleme i 7

5.1.4 The furthest earleme........... o il 8

5.2 The basic models of input i 8
5.2.1 The standard model of input................, 8

5.2.2 Ambiguous input 9

5.3 Terminals ... 9

6 Exhaustion................., 10
7 Semantics............., 12
8 Threads.............., 13
9 Failure......... 14
9.1 Libmarpa’s approach to failure............... 14
9.2 User non-conformity to specified behavior...................... 14
9.3 Classifying failure i i 15
9.4 Memory allocation failure............ i 15

9.5 Undetected failure...... ..ot 15
9.6 Irrecoverable hard failure...................................... 16
9.7 Partially recoverable hard failure............................... 16
9.8 Library-recoverable hard failure............... 16
9.9 Fully recoverable hard failure............. o ... 17
9.10 Soft fallureo 17
9. 11 Error codes ...t 18

10 Introduction to the method descriptions.... 19

10.1 About the overviews.o 19
10.2 Naming conventionsc.ceeeeeeiiiiiiiiiieeeeeeenn.. 19
10.3 Return values....... ..o i 19
10.4 How to read the method descriptions 20
11 Staticmethods................................ 21
12 Configuration methods....................... 22
13 Grammar methods............................ 23
13,1 OVEIVIEW . . oottt 23
13.2 Creating a new grammareeueuennneenneennenn.. 23
13.3 Tracking the reference count of the grammar.................. 24
13.4 Symbol methods 24
13,5 Rulemethods 26
13.6 Sequence methods...............oiiiii 28
13.7 Rank methods........ i 30
13.8 Precomputing the Grammar............., 31
14 Recognizer methods 34
14.1 Recognizer Overviewttt 34
14.2 Creating a New TeCOZNIZETvuuttt et 34
14.3 Keeping the reference count of a recognizer 34
14.4 Life cycle mutators......... ..o 34
14.5 LoCation ACCESSOTSttt e ettt 37
14.6 Other parse status methods L. 39
15 Progressreports..................., 41
16 Bocage methods.............................. 43
16.1 OVeIVIEW . . oottt e 43
16.2 Creating a new bocage ...t 43
16.3 Reference countingcoiiiii i 43

16.4 ACCESSOTS . oo vttt e e e e 43

ii

17 Ordering methods 45
171 OVeIVIEW . .ottt e e 45
17.2 Creating an ordering ...t 45
17.3 Reference countingo 45
17.4 ACCESSOTS ..ottt 45
17.5 Non-default ordering, 46

18 Tree methods.................................. 47
18.1 OVEIVIEW . . oottt 47
18.2 Creating a new tree iterator 47
18.3 Reference countingo 47
18.4 Iterating through the trees o it 47

19 Valuemethods.................. 49
191 OVeIVIEW . .ottt 49
19.2 How to use the valuator i i, 49
19.3 Advantages of step-driven valuation 49
19.4 Maintaining the stack 50

19.4.1 Sizing the stack i 51

19.4.2 Initializing locations in the stack......................... 51
19.5 Creating anew valuator............ ... i, 52
19.6 Reference countingo 52
19.7 Stepping through the valuator................................ 53
19.8 Valuator steps by type ... 53
19.9 DBasic Step aCCesSOrs ..o vt e 54
19.10 Other Step ACCESSOTS. ...ttt 54

20 Events 56
201 OVEIVIEW . ettt ettt e 56
20.2 DBasSiC event aCCeSSOTSttt ettt 56
20.3 Completion events.ot 56
20.4 Symbol nulled events....... ..o, 58
20.5 Prediction events..........cooiiiiiiii i 60
20.6 Symbol expected events i 61
20.7 Event codes.........ooiiiiii 62

21 Error methods, macros and codes........... 64
21.1 Errormethods i 64
21.2 Error MacroS. .. .oouin e e 64
21.3 External error codes.uiiiiiiiiiiiii i 64
21.4 Internal error codes ... 72

22 Technical notes................................ 75
22.1 Data types used by LibmarpaoooiiiiiiL 75
22.2 Why so many time objects? i 75
22.3 Numbered objects 75

224 LHS terminalS.ooo i 76

iii

23 Advanced input models 77
23.1 The dense variable-length token model........................ 7
23.2 The fully general input model 77

24 Futures.......... ... 79
24.1 Orthogonal treatment of exhaustion 79
24.2 Furthest earleme values. 79
24.3 Additional recoverable failures in marpa_r_alternative()....... 79
24.4 Untested methodso 79

24.4.1 Ranking methods......... i 80
24.4.2 Zero-width assertion methods................... 80
24.4.3 Methods for revising parses.............cooiiiiiiiii.. 81

25 Deprecated techniques and methods........ 82

25.1 Valued and unvalued symbols............. L. 82
25.1.1 What unvalued symbols were 82
25.1.2 Grammar methods dealing with unvalued symbols 82
25.1.3 Registering semantics in the valuator 83

Index of terms. 84

iv

1 No warranty

The Libmarpa license takes precedence over the statements in this document. In particular,
the license states that Libmarpa is free software and has no warranty. No statement in this

document should be construed as providing any kind of warranty.

2 About this document

2.1 How to read this document

This is essentially a reference document, but its early chapters lay out concepts essential
to the others. Readers will usually want to read the chapters up and including Chapter 10
[Introduction to the method descriptions], page 19, in order. Otherwise, they should follow
their interests.

2.2 Prerequisites

This document is very far from self-contained. It assumes the following:

e The reader knows the C programming language at least well enough to understand
function prototypes and return values.

e The reader has read the documents for one of Libmarpa’s upper layers. As of this
writing, the only such layer is Marpa: :R2 or Marpa: :R3, in Perl.

e The reader knows some parsing theory (Section 2.3 [Parsing theory|, page 2).

2.3 Parsing theory

This document assumes some acquaintance with parsing theory. The reader’s level of knowl-
edge is probably adequate if he can answer the following questions, either immediately or
after a little reflection.

e What is a BNF rule?
e What is a Marpa sequence rule?

e As a reminder, Marpa’s sequence rules are implemented as left recursions. What does
that mean?

e Take a Marpa sequence rule at random. What does it look like when rewritten in BNF?

e What does the sequence look like when rewritten in BNF as a right-recursion?

2.4 Terminology and notation

In this document,
e A boolean value, or boolean, is an integer which is 0 or 1.
e iff abbreviates “if and only if”.

e application means an “application” of Libmarpa. In this document, a Libmarpa appli-
cation is not necessarily an application program. For our purposes, an “application”
might be another library which uses Libmarpa.

e max(x,y) is the maximum of x and y, where x and y are two numbers.

e Libmarpa method, or just method means a C function or a function-like macro of the
Libmarpa library.

e user means a “user” of the Libmarpa library. A user of the library is also a programmer,
so that in this documents, “user” and “programmer” are essentially synonyms.

Chapter 2: About this document 3

e We (and “us” and "our”) refer to the authors. As of this writing, there is a primary
author, but the plural is traditional, and our “we” is intended to include the reader
and everyone we are joining on the millenia-old voyage of discovery into mathematics
and language.

2.4.1 Application and diagnostic behavior

An application behavior is a behavior on which it is intended that the design of applications
will be based. Most of the behaviors specified in this document are application behaviors.
We sometimes say that “applications may expect” a certain behavior to emphasize that
that behavior is an application behavior.

After an irrecoverable failure, the behavior of a Libmarpa application is undefined, so
that there are no behaviors which can be relied on for normal application processing, and
therefore, there are no application behaviors. In this circumstance, some of the application
behaviors become diagnostic behaviors. A diagnostic behavior is a behavior which it is
suggested that the programmer may attempt in the face of an irrecoverable failure, for
testing, diagnostics and debugging. They are hoped for, rather than expected, and intended
to allow the programmer to deal with irrecoverable failures as smoothly as possible. (See
Chapter 9 [Failure], page 14.)

In this document, a behavior is a diagnostic behavior only if that is specifically indicated.
Applications should not be designed to rely on diagnostics behaviors. We sometimes say
that “diagnostics may attempt” a certain behavior to emphasize that that behavior is a
diagnostic behavior.

3 About Libmarpa

Libmarpa implements the Marpa parsing algorithm. Marpa is named after the legendary
11th century Tibetan translator, Marpa Lotsawa. In creating Marpa, I depended heavily
on previous work by Jay Earley, Joop Leo, John Aycock and Nigel Horspool.

Libmarpa implements the entire Marpa algorithm. This library does the necessary gram-
mar preprocessing, recognizes the input, and produces parse trees. It also supports the
ordering, iteration and evaluation of the parse trees.

Libmarpa is very low-level. For example, it has no strings. Rules, symbols, and token
values are all represented by integers. This, of course, will not suffice for many applications.
Users will very often want names for the symbols, non-integer values for tokens, or both.
Typically, applications will use arrays to translate Libmarpa’s integer ID’s to strings or
other values as required.

Libmarpa also does not implement most of the semantics. Libmarpa does have an
evaluator (called a “valuator”), but it does not manipulate the stack directly. Instead,
Libmarpa, based on its traversal of the parse tree, passes optimized step by step stack
manipulation instructions to the upper layer. These instructions indicate the token or rule
involved, and the proper location for the true token value or the result of the rule evaluation.
For rule evaluations, the instructions include the stack location of the arguments.

Marpa requires most semantics to be implemented in the application. This allows the
application total flexibility. It also puts the application is in a much better position to
prevent errors, to catch errors at runtime or, failing all else, to successfully debug the logic.

4 Architecture

4.1 Major objects

The classes of Libmarpa’s object system fall into two types: major and numbered. These
are the Libmarpa’s major classes, in sequence.

e Configuration: A configuration object is a thread-safe way to hold configuration vari-
ables, as well as the return code from failed attempts to create grammar objects.

e Grammar: A grammar object contains rules and symbols, with their properties.
e Recognizer: A recognizer object reads input.

e Bocage: A bocage object is a collection of parse trees, as found by a recognizer. Bocages
are similar to parse forests.

e Ordering: An ordering object is an ordering of the trees in a bocage.
e Tree: A tree object is a bocage iterator.

e Value: A value object is a tree iterator. Iteration of tree using a value object produces
“steps”. These “steps” are instructions to the application on how to evaluate the
semantics, and how to manipulate the stack.

The major objects have one letter abbreviations, which are used frequently. These are,
in the standard sequence,

e Configuration: C

e Grammar: G

e Recognizer: R

e Bocage: B

e Ordering: O

o Tree: T

e Value: V

4.2 Time objects

All of Libmarpa’s major classes, except the configuration class, are “time” classes. Except
for objects in the grammar class, all time objects are created from another time object.
Each time object is created from a time object of the class before it in the sequence. A
recognizer cannot be created without a precomputed grammar; a bocage cannot be created
without a recognizer; and so on.

When one time object is used to create a second time object, the first time object is the
parent object and the second time object is the child object. For example, when a bocage
is created from a recognizer, the recognizer is the parent object, and the bocage is the child
object.

Grammars have no parent object. Every other time object has exactly one parent object.
Value objects have no child objects. All other time objects can have any number of children,
from zero up to a number determined by memory or some other machine-determined limit.

Every time object has a base grammar. A grammar object is its own base grammar. The
base grammar of a recognizer is the grammar that it was created with. The base grammar

Chapter 4: Architecture 6

of any other time object is the base grammar of its parent object. For example, the base
grammar of a bocage is the base grammar of the recognizer that it was created with.

4.3 Reference counting

Every object in a “time” class has its own, distinct, lifetime, which is controlled by the
object’s reference count. Reference counting follows the usual practice. Contexts which
take a share of the “ownership” of an object increase the reference count by 1. When a
context relinquishes its share of the ownership of an object, it decreases the reference count
by 1.

Each class of time object has a “ref” and an “unref” method, to be used by those contexts
which need to explicitly increment and decrement the reference count. For example, the
“ref” method for the grammar class is marpa_g_ref () and the “unref” method for the
grammar class is marpa_g_unref ().

Time objects do not have explicit destructors. When the reference count of a time object
reaches 0, that time object is destroyed.

Much of the necessary reference counting is performed automatically. The context calling
the constructor of a time object does not need to explicitly increase the reference count,
because Libmarpa time objects are always created with a reference count of 1.

Child objects “own” their parents, and when a child object is successfully created, the
reference count of its parent object is automatically incremented to reflect this. When a
child object is destroyed, it automatically decrements the reference count of its parent.

In a typical application, a calling context needs only to remember to “unref” each time
object that it creates, once it is finished with that time object. All other reference decre-
ments and increments are taken care of automatically. The typical application never needs
to explicitly call one of the “ref” methods.

More complex applications may find it convenient to have one or more contexts share
ownership of objects created in another context. These more complex situations are the
only cases in which the “ref” methods will be needed.

4.4 Numbered objects

In addition to its major, “time” objects, Libmarpa also has numbered objects. Numbered
objects do not have lifetimes of their own. Every numbered object belongs to a time object,
and is destroyed with it. Rules and symbols are numbered objects. Tokens values are
another class of numbered objects.

5 Input

5.1 Earlemes

5.1.1 The traditional input model

In traditional Earley parsers, the concept of location is very simple. Locations are numbered
from 0 to n, where n is the length of the input. Every location has an Earley set, and vice
versa. Location 0 is the start location. Every location after the start location has exactly
one input token associated with it.

Some applications do not fit this traditional input model — natural language processing
requires ambiguous tokens, for example. Libmarpa allows a wide variety of alternative input
models.

In Libmarpa a location is called a earleme. The number of an Earley set is the ID of
the Earley set, or its ordinal. In the traditional model, the ordinal of an Earley set and its
earleme are always exactly the same, but in Libmarpa’s advanced input models the ordinal
of an Earley set can be different from its location (earleme).

The important earleme values are the latest earleme. the current earleme, and the
furthest earleme. Latest, current and furthest earleme, when they have determinate values,
obey a lexical order in this sense: The latest earleme is always at or before the current
earleme, and the current earleme is always at or before the furthest earleme.

5.1.2 The latest earleme

The latest Earley set is the Earley set completed most recently. This is initially the Earley
set at location 0. The latest Earley set is always the Earley set with the highest ordinal,
and the Earley set with the highest earleme location. The latest earleme is the earleme
of the latest Earley set. If there is an Earley set at the current earleme, it is the lat-
est Earley set and the latest earleme is equal to the current earleme. There is never an
Earley set after the current earleme, and therefore the latest Earley set is never after the
current earleme. The marpa_r_start input() and marpa_r_earleme_complete() meth-
ods are only ones that change the latest earleme. See [marpa_r_start_input], page 34, and
[marpa_r_earleme_complete|, page 36.

The latest earleme is different from the current earleme if and only if there is no Earley
set at the current earleme. A different end of parsing can be specified, but by default,
parsing is of the input in the range from earleme 0 to the latest earleme.

5.1.3 The current earleme

The current earleme is the earleme that Libmarpa is currently working on. More specifically,
it is the one at which new tokens will start. Since tokens are never zero length, a new
token will always end after the current earleme. marpa_r_start_input() initializes the
current earleme to 0, and every call to marpa_r_earleme_complete() advances the current
earleme by 1. The marpa_r_start input() and marpa_r_earleme_complete() methods
are only ones that change the current earleme. See [marpa_r_start_input]|, page 34, and
[marpa_r_earleme_complete], page 36.

Chapter 5: Input 8

5.1.4 The furthest earleme

Loosely speaking, the furthest earleme is the furthest earleme reached by the parse. More
precisely, it is the highest numbered earleme at which a token ends and is 0 if there are
no tokens. The furthest earleme is 0 when a recognizer is created. With every call to
marpa_r_alternative(), the end of the token it adds is calculated. A token ends at the
earleme location current+length, where current is the current earleme, and length is the
length of the newly added token. If old_f is the furthest earleme before a call to marpa_
r_alternative(), the furthest earleme after the call is max(old_f, current+length).
The marpa_r_new() and marpa_r_alternative() methods are only ones that change the
furthest earleme. See [marpa_r_new|, page 34, and [marpa_r_alternative], page 35.

In the basic input models, where every token has length 1, calling marpa_r_earleme_
complete() after each marpa_r_alternative() call is sufficient to process all inputs, and
the furthest earleme’s value can be typically be ignored. In alternative input models, where
tokens have lengths greater than 1, calling marpa_r_earleme_complete() once after the
last token is read may not be enough to ensure that all tokens have been processed. To
ensure that all tokens have been processed, an application must advance the current earleme
by calling marpa_r_earleme_complete (), until the current earleme is equal to the furthest
earleme.

5.2 The basic models of input

For the purposes of presentation, we (somewhat arbitrarily) divide Libmarpa’s input models
into two groups: basic and advanced. In the basic input models of input, every token is
exactly one earleme long. This implies that, in a basic model of input,

e every token is the same length,
e the ordinal of an Earley set will always be the same as its earleme location, and
e the latest earleme and the current earleme are always equal.
In the advanced models of input, tokens may have a length other than 1. Most applica-

tions use the basic input models. The details of the advanced models of input are presented
in a later chapter. See Chapter 23 [Advanced input models], page 77.

5.2.1 The standard model of input

In the standard model of input, there is exactly one successful marpa_r_alternative()
call immediately previous to every marpa_r_earleme_complete() call. A marpa_r_
alternative() call is immediately previous to a marpa_r_earleme_complete() call iff
that marpa_r_earleme_complete() call is the first marpa_r_earleme_complete() call
after the marpa_r_alternative() call.

Recall that, since the standard model is a basic model, the token length in every suc-
cessful call to marpa_r_alternative() will be one. For an input of length n, there will
be exactly n marpa_r_earleme_complete() calls, and all but the last call to marpa_r_
earleme_complete () must be successful.

In the standard model, after a successful call to marpa_r_alternative(), if c is the
value of the current earleme before the call,

e the current earleme will remain unchanged and therefore will be ¢; and

e the furthest earleme be c+1.

Chapter 5: Input 9

In the standard model, a call to marpa_r_earleme_complete() follows a successful call
of marpa_r_alternative(), so that the value of the furthest earleme before the call to
marpa_r_earleme_complete() will be c+1, where c is the value of the current earleme.
After a successful call to marpa_r_earleme_complete(),

e the current earleme will be advanced to c+1; and

e the furthest earleme will be c+1, and therefore equal to the current earleme.

Recall that, in the basic models of input, the latest earleme is always equal to the current
earleme.

5.2.2 Ambiguous input

We can loosen the standard model to allow more than one successful call to marpa_r_
alternative() immediately previous to each call to marpa_r_earleme_complete(). This
change will mean that multiple tokens become possible at each earleme — in other words,
that the input becomes ambiguous. We continue to require that there be at least one suc-
cessful call to marpa_r_alternative() before each call to marpa_r_earleme_complete().
And we recall that, since this is a basic input model, all tokens must have a length of 1.

In the ambiguous input model, the behavior of the current, latest and furthest earlemes
are exactly as described for the standard model. See Section 5.2.1 [The standard model of
input], page 8.

5.3 Terminals

A terminal symbol is a symbol which may appear in the input. Traditionally, all LHS
symbols, as well as the start symbol, must be non-terminals. This is Marpa’s behavior, by
default.

Marpa allows the user to eliminate the distinction between terminals and non-terminals.
In this, it differs from traditional parsers. Libmarpa can arrange for a terminal to appear
on the LHS of one or more rules, or for a terminal to be the start symbol. However, since
terminals can never be zero length, it is a logical contradiction for a nulling symbol to also
be a terminal and Marpa does not allow it.

Token values are int’s. Libmarpa does nothing with token values except accept them
from the application and return them during parse evaluation.

10

6 Exhaustion

A parse is exhausted when it cannot accept any further input. A parse is active iff it is not
exhausted. For a parse to be exhausted, the furthest earleme and the current earleme must
be equal. However, the converse is not always the case: if more tokens can be read at the
current earleme, then it is possible for the furthest earleme and the current earleme to be
equal in an active parse.

Parse exhaustion always has a location. That is, if a parse is exhausted it is exhausted
at some earleme location X. If a parse is exhausted at location X, then

e There may be valid parses at X.

e The parse was active at all locations earlier than X.
e There may be valid parses at locations before X.

e There will be no valid parses at locations after X.

e No tokens can start at location X.

e No tokens can end at a location after X.

e No tokens can start at any location after X.

e No tokens will be accepted by an exhausted parser. It is an irrecoverable hard failure
to call marpa_r_alternative() after a parser has become exhausted.

e No Earley sets will be at any location after X.

e No earlemes are completed by, and no Earley sets are created by, an exhausted parser.
It is an irrecoverable hard failure to call marpa_r_earleme_complete() after a parser
has become exhausted.

Users sometimes assume that parse exhaustion means parse failure. But other users
sometimes assume that parse exhaustion means parse success. For many grammars, there
are strong associations between parse exhaustion and parse success, but the strong associ-
ation can go either way, Both exhaustion-loving and exhaustion-hating grammars are very
common in practical application.

In an exhaustion-hating application, parse exhaustion typically means parse failure. C
programs, Perl scripts and most programming languages are exhaustion-hating applications.
If a C program is well-formed, it is always possible to read more input. The same is true of
a Perl program that does not have a __DATA__ section.

In an exhaustion-loving application parse exhaustion means parse success. A toy exam-
ple of an exhaustion-loving application is the language consisting of balanced parentheses.
When the parentheses come into perfect balance the parse is exhausted, because any further
input would unbalance the brackets. And the parse succeeds when the parentheses come
into perfect balance. Exhaustion means success. Any language which balances start and
end indicators will tend to be exhaustion-loving. HTML and XML, with their start and
end tags, can be seen as exhaustion-loving languages.

One common form of exhaustion-loving parsing occurs in lexers which look for longest
matches. Exhaustion will indicate that the longest match has been found.

It is possible for a language to be exhaustion-loving at some points and exhaustion-hating
at others. We mentioned Perl’s __DATA__ as a complication in a basically exhaustion-hating
language.

Chapter 6: Exhaustion 11

marpa_r_earleme_complete() and marpa_r_start_input are the only methods
that may encounter parse exhaustion. See |[marpa_r_earleme_complete], page 36, and
[marpa_r_start_input], page 34. When the marpa_r_start_input or marpa_r_earleme_
complete() methods exhaust the parse, they generate a MARPA_EVENT_EXHAUSTED
event. Applications can also query parse exhaustion status directly with the
marpa_r_is_exhausted() method. See [marpa_r_is_exhausted], page 39.

12

7 Semantics

Libmarpa handling of semantics is unusual. Most semantics are left up to the applica-
tion, but Libmarpa guides them. Specifically, the application is expected to maintain the
evaluation stack. Libmarpa’s valuator provides instructions on how to handle the stack.
Libmarpa’s stack handling instructions are called “steps”. For example, a Libmarpa step
might tell the application that the value of a token needs to go into a certain stack position.
Or a Libmarpa step might tell the application that a rule is to be evaluated. For rule eva-
lution, Libmarpa will tell the application where the operands are to be found, and where
the result must go.

The detailed discussion of Libmarpa’s handling of semantics is in the reference chapters of
this document, under the appropriate methods and classes. The most extensive discussion
of the semantics is in the section that deals with the methods of the value time class
(Chapter 19 [Value methods|, page 49).

13

8 Threads

Libmarpa is thread-safe, given circumstances as described below. The Libmarpa methods
are not reentrant.

Libmarpa is C89-compliant. It uses no global data, and calls only the routines that are
defined in the C89 standard and that can be made thread-safe. In most modern implemen-
tations, the default C89 implementation is thread-safe to the extent possible. But the C89
standard does not require thread-safety, and even most modern environments allow the user
to turn thread safety off. To be thread-safe, Libmarpa must be compiled and linked in an
environment that provides thread-safety.

While Libmarpa can be used safely across multiple threads, a Libmarpa grammar cannot
be. Further, a Libmarpa time object can only be used safely in the same thread as its base
grammar. This is because all time objects with the same base grammar share data from
that base grammar.

To work around this limitation, the same grammar definition can be used to a create
a new Libmarpa grammar time object in each thread. If there is sufficient interest, future
versions of Libmarpa could allow thread-safe cloning of grammars and other time objects.

14

9 Failure

As a reminder, no language in this chapter (or, for that matter, in this document) should
be read as providing, or suggesting the existence of, a warranty. See [license], page 2. Also,
see Chapter 1 [No warranty|, page 1.

9.1 Libmarpa’s approach to failure

Libmarpa is a C language library, and inherits the traditional C language approach to
avoiding and handling user programming errors. This approach will strike readers unfa-
miliar with this tradition as putting an appallingly large portion of the burden of avoiding
application programmer error on the application programmer themself.

But in the early 1970’s, when the C language first stabilized, the alternative, and the
consensus choice for its target applications was assembly language. In that context, C was
radical in its willingness to incur a price in efficiency in order to protect the programmer
from themself. C was considered to take a excessively "hand holding" approach which very
much flew in the face of consensus.

The decades have made a large difference in the trade-offs, and the consensus about the
degree to which even a low-level language should protect the user has changed. It seems
inevitable that C will be replaced as the low-level language of choice, by a language which
places fewer burdens on the programmer, and more on the machine. The question seems to
be not whether C will be dethroned as the “go to” language for low-level progamming, but
when, and by which alternative.

Modern hardware makes many simple checks essentially cost-free, and Libmarpa’s efforts
to protect the application programmer go well beyond what would have been considered
best practice in the past. But it remains a C language library. But, on the whole, the Lib-
marpa application programmer must be prepared to exercise the high degree of carefulness
traditionally required by its C language environment. Libmarpa places the burden of avoid-
ing irrecoverable failures, and of handling recoverable failures, largely on the application
programmer.

9.2 User non-conformity to specified behavior

This document specifies many behaviors for Libmarpa application programs to follow, such
as the nature of the arguments to each method. The C language environment specifies many
more behaviors, such as proper memory management. When a non-conformity to specified
behavior is unintentional and problematic, it is frequently called a “bug”. Even the most
carefully programmed Libmarpa application may sometimes contain a “bug”. In addition,
some specified behaviors are explicitly stated as characterizing a primary branch of the
processing, rather than made mandatory for all successful processing. Non-conformity to
non-mandatory behaviors can be efficiently recoverable, and is often intentional.

This chapter describes how non-conformity to specified behavior by a Libmarpa applica-
tion is handled by Libmarpa. Non-conformity to specified behavior by a Libmarpa applica-
tion is also called, for the purposes of this document, a Libmarpa application programming
failure. In contexts where no ambiguity arises, Libmarpa application programming failure
will usually be abbreviated to failure.

Chapter 9: Failure 15

Libmarpa application programming success in a context is defined as the absence of
unrecovered failure in that context. When no ambiguity arises, Libmarpa application pro-
gramming success is almost always abbreviated to success. For example, the success of
an application means the application ran without any irrecoverable failures, and that it
recovered from all the recoverable failures that were detected.

9.3 Classifying failure

A Libmarpa application programming failure, unless specified otherwise, is an irrecoverable
failure. Omnce an irrecoverable failure has occurred, the further behavior of the program
is undefined. Nonetheless, we specify, and Libmarpa attempts, diagnostics behaviors (see
Section 2.4.1 [Application and diagnostic behavior|, page 3) in an effort to handle irrecov-
erable failures as smoothly as possible.

A Libmarpa application programming failure is recoverable if and only if it is specified
as such.

A failure is called a hard failure is it has an error code associated with it. A recoverable
failure is called a soft failure if it has no associated error code. (For more on error codes,
see Section 9.11 [Error codes|, page 18.)

All failures fall into one of five types. In order of severity, these are
e memory allocation failures,
e undetected failures,
e irrecoverable hard failures,
e partially recoverable hard failures, and
o fully recoverable hard failures, and

e soft failures.

9.4 Memory allocation failure

Failure to allocate memory is the most irrecoverable of irrecoverable errors. Even effective
error handling assumes the ability to allocate memory, so that the practice has been, in
the event of a memory allocation failure, to take Draconian action. On memory allocation
failure, as with all irrecoverable failures, Libmarpa’s behavior in undefined, but Libmarpa
attempts to terminate the current program abnormally by calling abort ().

Memory allocation failure is the only case in which Libmarpa terminates the program.
In all other cases, Libmarpa leaves the decision to terminate the program, whether normally
or abnormally, up to the application programmer.

Memory allocation failure does not have an error code. As a pedantic matter, memory
allocation failure is neither a hard or a soft failure.

9.5 Undetected failure

An undetected failure is a failure that the Libmarpa library does not detect. Many failures
are impossible or impractical for a C library to detect. Two examples of failure that the
Libmarpa methods do not detect are writes outside the bounds of allocated memory, and
use of memory after it has been freed. C is not strongly typed, and arguments of Libmarpa

Chapter 9: Failure 16

routines undergo only a few simple tests, tests which are inadequate to detect many of the
potential problems.

By undetected failure we emphasize that we mean failures undetected by the Libmarpa
methods. In the examples just given, there exist tools that can help the programmer detect
memory errors and other tools exist to check the sanity of method arguments.

This document points out some of the potentially undetected problems, when doing so
seems more helpful than tedious. But any attempt to list all the undetected problems would
be too large and unwieldy to be useful.

Undetected failure is always irrecoverable. An undetected failure is neither a hard or a
soft failure.

9.6 Irrecoverable hard failure

An irrecoverable hard failure is an irrecoverable Libmarpa application programming failure
that has an error code associated with it. Libmarpa attempts to behave as predictably as
possible in the face of a hard failure, but once an irrecoverable failure occurs, the behavior
of a Libmarpa application is undefined.

In the event of an irrecoverable failure, there are no application behaviors. The diagnostic
behavior for a hard failure is as described for the method which detects the hard failure.
At a minimum, this diagnostic behavior will be returning from the method which detects
the hard failure with the return value specified for hard failure, and setting the error code
as specified for hard failure.

9.7 Partially recoverable hard failure

A partially recoverable hard failure is a recoverable Libmarpa application programming
failure

e that has an error code associated with it; and

e after which some, but not all, of the application behaviors remain available to the
programmer.

For every partially recoverable hard failure, this document specifies the application be-
haviors that remain available after it occurs. The most common kind of partially recoverable
hard failure is a library-recoverable hard failure. For an example of partially recoverable
hard failure, see Section 9.8 [Library-recoverable hard failure], page 16.

9.8 Library-recoverable hard failure

A library-recoverable hard failure is a type of partially recoverable hard failure. Loosely
described, it is a hard failure which allows the programmer to continue to use many of the
Libmarpa methods in the library, but which disallows certain methods on some objects.

To state the restrictions of application behaviors more precisely, let the “failure gram-
mar” be the base grammar of the method which detected the library-recoverable hard
failure. After a library-recoverable hard failure, the following behaviors are no longer ap-
plcation behaviors:

e Libmarpa mutator and constructor method calls where the base grammar is the failure
grammar.

Chapter 9: Failure 17

Recall that any use of a behavior which is not an application behavior is an irrecoverable
failure.

The application behaviors remaining after a library-recoverable hard failure are the fol-
lowing;:

e All Libmarpa accessor method calls, even those whose base grammar is the failure
grammar.

e All Libmarpa destructor method calls, even those whose base grammar is the failure
grammar. An application will often want to destroy all Libmarpa objects whose base
grammar is the failure grammar, in order to clear memory of unusable objects.

e All Libmarpa mutator and constructor method calls, except those whose base grammar
is the failure grammar.

e All Libmarpa static method calls.

e All use of non-Libmarpa interfaces, including other libraries and the C language envi-
ronment.

An example of a library-recoverable hard failure is the MARPA_ERR_COUNTED_NULLABLE
error in the marpa_g_precompute method. See [marpa_g_precompute], page 32.

9.9 Fully recoverable hard failure

A fully recoverable hard failure is a recoverable Libmarpa application programming failure
e that has an error code associated with it; and

e after which all of the application behaviors remain available to the programmer.

One example of a fully recoverable hard failure is the error code MARPA_ERR_UNEXPECTED_
TOKEN_ID. The “Ruby Slippers” parsing technique (see [Ruby Slippers|, page 36), which
has seen extensive usage, is based on Libmarpa’s ability to recover from a MARPA_ERR_
UNEXPECTED_TOKEN_ID error fully and efficiently,

9.10 Soft failure

An soft failure is an recoverable Libmarpa application programming failure that has no
error code associated with it. Hard errors are assigned error codes in order to tell them
apart. Error codes are not necessary or useful for soft errors, because there is at most one
type of soft failure per Libmarpa method.

Soft failures are so called, because they are the least severe kind of failure. The most
severe failures are “bugs” — unintended, and a symptom of a problem. Soft failures, on
the other hand, are a frequent occurrence in normal, successful, processing. In the phrase
“soft failure”, the word “failure” is used in the same sense that its cognate “fail” is used
when we say that a loop terminates when it “fails” its loop condition. That ”failure” is of
a condition necessary to continue on a main branch of processing, and a signal to proceed
on another branch.

It is expected that Libmarpa applications will be designed such that successful execution
is based on the handling specified for soft failures. In fact, a non-trival Libmarpa application
can hardly be designed except on that basis.

Chapter 9: Failure 18

9.11 Error codes

As stated, every hard failure has an associated error code. Full descriptions of the error
codes that are returned by the external methods are given in their own section (Section 21.3
[External error codes|, page 64).

How the error code is accessed depends on the method which detects the hard failure
associated with that error code. Methods for time objects always set the error code in the
base grammar, from which it may be accessed using the error methods described below
(Section 21.1 [Error methods|, page 64). If a method has no base grammar, the way in
which the error code for the hard failures that it detects can be accessed will be stated in
the description of that method.

Since the error of a time object is set in the base grammar, it follows that every object
with the same base grammar has the same error code. Objects with different base grammars
may have different error codes.

While error codes are properties of a base grammar, irrecoverability is application-wide.
That is, whenever any irrecoverable failure occurs, the entire application is irrecoverable.
Once an application becomes irrecoverable, those Libmarpa objects with error codes for
recoverable errors are still subject to the general irrecoverability.

19

10 Introduction to the method descriptions

The following chapters describe Libmarpa’s methods in detail.

10.1 About the overviews

The method descriptions are grouped into chapters and sections. Each such group of meth-
ods descriptions begins, optionally, with an overview. These overviews, again optionally,
end with a “cheat sheet”. The “cheat sheets” name the most important Libmarpa methods
in that chapter or section, in the order in which they are typically used, and very briefly
describe their purpose.

The overviews sometimes speak of an “archetypal” application. The archetypal Lib-
marpa application implements a complete logic flow, starting with the creation of a gram-
mar, and proceeding all the way to the return of the final result from a value object. In
the archetypal Libmarpa application, the grammar, input and semantics are all small but
non-trivial.

10.2 Naming conventions

Methods in Libmarpa follow a strict naming convention. All methods have a name beginning
with marpa_, if they are part of the external interface. If an external method is not a
static method, its name is prefixed with one of marpa_c_, marpa_g_, marpa_r_, marpa_b_,
marpa_o_, marpa_t_ or marpa_v_, where the single letter between underscores is one of the
Libmarpa major class abbreviations. The letter indicates which class the method belongs
to.

Methods that are exported, but that are part of the internal interface, begin with _
marpa_. Methods that are part of the internal interface (often called “internal methods”)
are subject to change and are intended for use only by Libmarpa’s developers.

Libmarpa reserves the marpa_ and _marpa_ prefixes for itself, with all their capitalization
variants. All Libmarpa names visible outside the package will begin with a capitalization
variant of one of these two prefixes.

10.3 Return values

Some general conventions for return values are worth mentioning:
e For methods that return an integer, a return value of —1 usually indicates soft failure.
e For methods that return an integer, a return value of —2 usually indicates hard failure.

e For methods that return an integer, a return value greater of zero or more usually
indicates success.

e If a method returns an pointer value, NULL usually indicates failure. Any other result
usually indicates success.

The Libmarpa programmer should not overly rely on the general conventions for return
values. In particular, —2 may sometimes be ambiguous — both a valid return value for
success, and a potential indication of hard failure. In this case, the programmer must
distinguish the two return statuses based on the error code, and a programmer who is
relying too heavily on the general conventions will fall into a trap. For a the description of
the return values of marpa_g_rule_rank_set (), see Section 13.7 [Rank methods]|, page 30.

Chapter 10: Introduction to the method descriptions 20

10.4 How to read the method descriptions

The method descriptions are written on the assumption that the reader has the following
in mind while reading them:

Fach method description begins with the signature of its “topic method”.
In the method description, the phrase "this method" always refers to the topic method.

Whenever "this method" is the subject of a sentence in the method description, it may
be elided, so that, for example, "This method returns 42" becomes "Returns 42".

If the return type of a method is not void, the last paragraph of its method description
is a “return value summary”. The return value summary starts with the label “Return
Value”.

Every method returns in exactly one of three statuses: success, hard failure, or soft
failure.

A return status of hard failure indicates that the method detected a hard failure.

A method may have several kinds of hard failure, including several kinds of irrecoverable
hard failure and several kinds of recoverable hard failure. On return, these can be
distinguished by their error codes.

If a method call hard fails, its error code is that associated with the hard failure.
Unless stated otherwise in the return value summary, the error code is set in the base
grammar of the method call, and may be accessed with the methods described below.
See Section 21.1 [Error methods], page 64.

If a method allows a recoverable hard failure, this is explicitly stated in its return
value summary, along with the associated error code. The method description with
state the circumstances under which the recoverable hard failure occurs, and what the
application must do to recover.

A return status of soft failure indicates that the method detected a soft failure.
Every method has at most one kind of soft failure.

If a method allows a soft failure, this is explicitly stated in its return value summary,
and the method description will state the circumstances under which the soft failure
occurs, and what the application must do to recover.

If a method call soft fails, the value of the error code is indeterminate.

If a method call succeeds, the value of the error code is indeterminate.

A return status of success indicates that the method did not detect any failures.

If both a hard failure and a soft failure occur, the return status will be hard failure.

If both a recoverable hard failure and an irrecoverable hard failure occur, the error code
will be for an irrecoverable hard failure.

The behaviors specified for success and soft failure are application behaviors.

The behaviors specified for hard failures are diagnostic behaviors if an irrecoverable
failure occurred, and application behaviors otherwise.

21

11 Static methods

Marpa_Error_Code marpa_check_version (int required_major, [Function]
int required_minor, int required_micro)
[Accessor] Checks that the Marpa library in use is compatible with the given ver-
sion. Generally, the application programmer will pass in the constants MARPA_MAJOR_
VERSION, MARPA_MINOR_VERSION, and MARPA_MICRO_VERSION as the three arguments,
to check that their application was compiled with headers the match the version of
Libmarpa that they are using.

If required_major.required_minor.required_micro is an exact match with 9.0.3, the
method succeeds. Otherwise the return status is an irrecoverable hard failure.

Return value: On success, MARPA_ERR_NONE. On hard failure, the error code.

Marpa_Error_Code marpa_version (int™ version) [Function]
[Accessor] Writes the version number in version. It is an undetected irrecoverable
hard failure if version does not have room for three int’s.

Return value: Always succeeds. The return value is indeterminate.

22

12 Configuration methods

The configuration object is intended for future extensions. These may allow the application
to override Libmarpa’s memory allocation and fatal error handling without resorting to
global variables, and therefore in a thread-safe way. Currently, the only function of the
Marpa_Config class is to give marpa_g_new() a place to put its error code.

Marpa_Config is Libmarpa’s only “major” class which is not a time class. There is no
constructor or destructor, although Marpa_Config objects do need to be initialized before
use. Aside from its own accessor, Marpa_Config objects are only used by marpa_g_new()
and no reference to their location is not kept in any of Libmarpa’s time objects. The intent
is to that it be convenient to have them in memory that might be deallocated soon after
marpa_g_new() returns. For example, they could be put on the stack.

int marpa_c_init (Marpa_Config* config) [Function]
[Mutator] Initialize the config information to “safe” default values. An irrecoverable
error will result if an uninitialized configuration is used to create a grammar.

Return value: Always succeeds. The return value is indeterminate.

Marpa_Error_Code marpa_c_error (Marpa_Config* config, const [Function]
char** p_error_string)
[Accessor] Error codes are usually kept in the base grammar, which leaves marpa_g_
new() no place to put its error code on failure. Objects of the Marpa_Config class
provide such a place. p_error_string is reserved for use by the internals. Applications
should set it to NULL.

Return value: The error code in config. Always succeeds, so that marpa_c_error ()
never requires an error code for itself.

23

13 Grammar methods

13.1 Overview

An archetypal application has a grammar. To create a grammar, use the marpa_g_new()
method. When a grammar is no longer in use, its memory can be freed using the marpa_
g_unref () method.

To be precomputed, a grammar must have one or more symbols. To create symbols, use
the marpa_g_symbol_new() method.

To be precomputed, a grammar must have one or more rules. To create rules, use the
marpa_g_rule_new() and marpa_g_sequence_new() methods.

For non-trivial parsing, one or more of the symbols must be terminals. To mark a symbol
as a terminal, use the marpa_g_symbol_is_terminal_set () method.

To be precomputed, a grammar must have exactly one start symbol. To mark a symbol
as the start symbol, use the marpa_g_start_symbol_set () method.

Before parsing with a grammar, it must be precomputed. To precompute a grammar,
use the marpa_g_precompute () method.

13.2 Creating a new grammar

Marpa_Grammar marpa_g_new (Marpa_Config* configuration) [Function]
[Constructor] Creates a new grammar time object. The returned grammar object is
not yet precomputed, and will have no symbols and rules. Its reference count will be
1.

Unless the application calls marpa_c_error() Libmarpa will not reference the loca-
tion pointed to by the configuration argument after marpa_g_new() returns. (See
[marpa_c_error], page 22.) The configuration argument may be NULL, but if it is,
there will be no way to determine the error code on failure.

Return value: On success, the grammar object. On hard failure, NULL. Also on hard
failure, if the configuration argument is not NULL, the error code is set in configuration.
The error code may be accessed using marpa_c_error().

int marpa_g_force_valued (Marpa-Grammar g) [Function]
[Mutator] It is recommended that this call be made immediately after the grammar
constructor. It turns off a deprecated feature.

The marpa_g_force_valued() forces all the symbols in a grammar to be “valued”.
The opposite of a valued symbol is one about whose value you do not care. This
distinction has been made in the past in hope of gaining efficiencies at evaluation
time. Current thinking is that the gains do not repay the extra complexity.

Return value: On success, a non-negative integer, whose value is otherwise indeter-
minate. On failure, -2.

Chapter 13: Grammar methods 24

13.3 Tracking the reference count of the grammar

Marpa_Grammar marpa_g_ref (Marpa-Grammar g) [Function]
[Mutator] Increases the reference count of g by 1. Not needed by most applications.

Return value: On success, g. On hard failure, NULL.

void marpa_g_unref (Marpa.Grammar g) [Function]
[Destructor| Decreases the reference count by 1, destroying g once the reference count
reaches zero.

13.4 Symbol methods

Marpa_Symbol_ID marpa_g_start_symbol (Marpa-Grammar g) [Function]
[Accessor] When successful, returns the ID of the start symbol. Soft fails, if there is
no start symbol. The start symbol is set by the marpa_g_start_symbol_set() call.

Return value: On success, the ID of the start symbol, which is always a non-negative
number. On soft failure, —1. On hard failure, —2.

Marpa_Symbol_ID marpa_g_start_symbol_set (Marpa-Grammar [Function]
g, Marpa_Symbol_ID sym_id)
[Mutator] When successful, sets the start symbol of grammar g to symbol sym_id.
Soft fails if sym_id is well-formed (a non-negative integer), but a symbol with that
ID does not exist.

Return value: On success, sym_id, which will always be a non-negative number. On
soft failure, —1. On hard failure, —2.

int marpa_g_highest_symbol_id (Marpa-Grammar g) [Function]
[Accessor] Return value: On success, the numerically largest symbol ID of g. On hard
failure, —2.

int marpa_g_symbol_is_accessible (Marpa-Grammar g, [Function]

Marpa_Symbol_ID sym_id)
[Accessor] A symbol is accessible if it can be reached from the start symbol. Soft fails
if sym_id is well-formed (a non-negative integer), but a symbol with that ID does
not exist. A common hard failure is calling this method with a grammar that is not
precomputed.

Return value: On success, 1 if symbol sym_id is accessible, 0 if not. On soft failure,
—1. On hard failure, —2.

int marpa_g_symbol_is_nullable (Marpa_Grammar g, [Function]
Marpa_Symbol_ID sym_id)
[Accessor] A symbol is nullable if it sometimes produces the empty string. A nulling
symbol is always a nullable symbol, but not all nullable symbols are nulling symbols.
Soft fails if sym_id is well-formed (a non-negative integer), but a symbol with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success, 1 if symbol sym_id is nullable, 0 if not. On soft failure,
—1. On hard failure, —2.

Chapter 13: Grammar methods 25

int marpa_g_symbol_is_nulling (Marpa_-Grammar g, [Function]
Marpa_Symbol_ID sym_id)
[Accessor] A symbol is nulling if it always produces the empty string. Soft fails if
sym_id is well-formed (a non-negative integer), but a symbol with that ID does not
exist. A common hard failure is calling this method with a grammar that is not
precomputed.

Return value: On success, 1 if symbol sym_id is nulling, 0 if not. On soft failure, —1.
On hard failure, —2.

int marpa_g_symbol_is_productive (Marpa_-Grammar g, [Function]
Marpa_Symbol_ID sym_id)
[Accessor] A symbol is productive if it can produce a string of terminals. All nullable
symbols are considered productive. Soft fails if sym_id is well-formed (a non-negative
integer), but a symbol with that ID does not exist. A common hard failure is calling
this method with a grammar that is not precomputed.

Return value: On success, 1 if symbol sym_id is productive, 0 if not. On soft failure,
—1. On hard failure, —2.

int marpa_g_symbol_is_start (Marpa.Grammar g, [Function]
Marpa_Symbol_ID sym_id)
[Accessor] On success, if sym_id is the start symbol, returns 1. On success, if sym_id
is not the start symbol, returns 0. On success, if no start symbol has been set, returns
0. is the start symbol.

Soft fails if sym_id is well-formed (a non-negative integer), but a symbol with that
ID does not exist.

Return value: On success, 1 or 0. On soft failure, —1. On hard failure, —2.

int marpa_g_symbol_is_terminal (Marpa-Grammar g, [Function]
Marpa_Symbol_ID sym_id)
[Accessor] On succcess, returns the “terminal status” of a sym_id. The terminal
status is 1 if sym_id is a terminal, O otherwise. To be used as an input symbol in the
marpa_r_alternative() method, a symbol must be a terminal.

By default, a symbol is a terminal if and only if it does not appear on the LHS of
any rule. The terminal status can be set explicitly with the marpa_g_symbol_is_
terminal_set () method. See [marpa_g_symbol_is_terminal_set], page 25.

Soft fails if sym_id is well-formed (a non-negative integer), but a symbol with that
ID does not exist.

Return value: On success, 1 or 0. On soft failure, —1. On hard failure, —2.

int marpa_g_symbol_is_terminal_set (Marpa.Grammar g, [Function]
Marpa_Symbol_ID sym_id, int value)
[Mutator] Sets the “terminal status” of a symbol. This function flags symbol sym_id
as a terminal if value is 1, or flags it as a non-terminal if value is 0. To be used as an
input symbol in the marpa_r_alternative() method, a symbol must be a terminal.
On success, this method returns value.

Once set to a value with this method, the terminal status of a symbol is “locked” at
that value. A subsequent call to this method that attempts to change the terminal

Chapter 13: Grammar methods 26

status of sym_id to a value different from its current one will hard fail with error code
MARPA_ERR_TERMINAL_IS_LOCKED. Other hard failures include when value is not 0 or
1; and when the grammar g is precomputed.

By default, a symbol is a terminal if and only if it does not appear on the LHS of any
rule. An attempt to flag a nulling symbol as a terminal will cause a failure, but this
is not necessarily detected before precomputation.

Return value: On success, value, which will be 1 or 0. On soft failure, —1. On hard
failure, —2.

Marpa_Symbol_ID marpa_g_symbol_new (Marpa-Grammar g) [Function]
[Mutator] When successful, creates a new symbol in grammar g.

Return value: On success, the ID of the new symbol; which will be a non-negative
integer. On hard failure, —2.

13.5 Rule methods

int marpa_g_highest_rule_id (Marpa-Grammar g) [Function]
[Accessor] Return value: On success, the numerically largest rule ID of g. On hard
failure, —2.

int marpa_g_rule_is_accessible (Marpa_Grammar g, [Function]

Marpa_Rule_ID rule_id)
[Accessor] A rule is accessible if it can be reached from the start symbol. A rule is
accessible if and only if its LHS symbol is accessible. The start rule is always an
accessible rule.

Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success 1 or 0: 1 if rule with ID rule_id is accessible, 0 if not. On
soft failure, —1. On hard failure, —2.

int marpa_g_rule_is_nullable (Marpa-Grammar g, [Function]
Marpa_Rule_ID ruleid)
[Accessor] A rule is nullable if it sometimes produces the empty string. A nulling rule
is always a nullable rule, but not all nullable rules are nulling rules.

Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success 1 or 0: 1 if the rule with ID rule_id is nullable, 0 if not.
On soft failure, —1. On hard failure, —2.

int marpa_g_rule_is_nulling (Marpa-Grammar g, [Function]
Marpa_Rule_ID ruleid)
[Accessor| A rule is nulling if it always produces the empty string.

Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID

does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Chapter 13: Grammar methods 27

Return value: On success 1 or 0: 1 if the rule with ID rule_id is nulling, 0 if not. On
soft failure, —1. On hard failure, —2.

int marpa_g_rule_is_loop (Marpa_Grammar g, Marpa_Rule_ID [Function]
rule_id)
[Accessor] A rule is a loop rule if it non-trivially produces the string of length one
which consists only of its LHS symbol. Such a derivation takes the parse back to where
it started, hence the term “loop”. “Non-trivially” means the zero-step derivation does
not count — the derivation must have at least one step.

The presence of a loop rule makes a grammar infinitely ambiguous, and applications
will typically want to treat them as fatal errors. But nothing forces an application to
do this, and Marpa will successfully parse and evaluate grammars with loop rules.

Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success 1 or 0: 1 if the rule with ID rule_id is a loop rule, 0 if not.
On soft failure, —1. On hard failure, —2.

int marpa_g_rule_is_productive (Marpa_Grammar g, [Function]
Marpa_Rule_ID rule_id)
[Accessor] A rule is productive if it can produce a string of terminals. A rule is
productive if and only if all the symbols on its RHS are productive. The empty string
counts as a string of terminals, so that a nullable rule is always a productive rule. For
that same reason, an empty rule is considered productive.

Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success 1 or 0: 1 if the rule with ID rule_id is productive, 0 if not.
On soft failure, —1. On hard failure, —2.

int marpa_g_rule_length (Marpa-Grammar g, Marpa_Rule_ID [Function]
rule_id)
[Accessor] The length of a rule is the number of symbols on its RHS.

Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist.

Return value: On success, the length of the rule with ID rule_id. On soft failure, —1.
On hard failure, —2.

Marpa_Symbol_ID marpa_g_rule_lhs (Marpa.Grammar g, [Function]
Marpa_Rule_ID rule_id)
[Accessor] Soft fails if rule_id is well-formed (a non-negative integer), but a rule with
that ID does not exist.

Return value: On success, the ID of the LHS symbol of the rule with ID rule_id. On
soft failure, —1. On hard failure, —2.

Chapter 13: Grammar methods 28

Marpa_Rule_ID marpa_g_rule_new (Marpa_Grammar g, [Function]
Marpa_Symbol_ID 1hs_id, Marpa_Symbol_ID *rhs_ids, int length)
[Mutator] On success, creates a new external BNF rule in grammar g. The ID of
the new rule will be a non-negative integer, which will be unique to that rule. In
addition to BNF rules, Marpa also allows sequence rules, which are created by the
marpa_g_sequence_new() method. See [marpa_g_sequence_new]|, page 29.
Sequence rules and BNF rules are both rules: They share the same series of rule IDs,

and are accessed and manipulated by the same methods, with the only differences
being as noted in the descriptions of those methods.

The LHS symbol is lhs_id, and there are length symbols on the RHS. The RHS
symbols are in an array pointed to by rhs_ids.
Possible hard failures, with their error codes, include:
e MARPA_ERR_SEQUENCE_LHS_NOT_UNIQUE: The LHS symbol is the same as that of
a sequence rule.

e MARPA_ERR_DUPLICATE_RULE: The new rule would duplicate another BNF rule.
Another BNF rule is considered the duplicate of the new one, if its LHS symbol
is the same as symbol lhs_id, if its length is the same as length, and if its RHS
symbols match one for one those in the array of symbols rhs_ids.

Return value: On success, the ID of the new external rule. On hard failure, —2.

Marpa_Symbol_ID marpa_g_rule_rhs (Marpa.Grammar g, [Function]
Marpa_Rule_ID rule_id, int ix)

[Accessor] When successful, returns the ID of the symbol at index ix in the RHS of
the rule with ID rule_id. The indexing of RHS symbols is zero-based.
Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist.
A common hard failure is for ix not to be a valid index of the RHS. This happens if
ix is less than zero, or or if ix is greater than or equal to the length of the rule.

Return value: On success, a symbol ID, which is always non-negative. On soft failure,
—1. On hard failure, —2.

13.6 Sequence methods

int marpa_g_rule_is_proper_separation (Marpa_Grammar g, [Function]
Marpa_Rule_ID rule_id)
[Accessor] When successful, returns
e 1 if rule_id is the ID of a sequence rule whose proper separation flag is set,
e 0 if rule_id is the ID of a sequence rule whose proper separation flag is not set,

e 0 if rule_id is the ID of a rule that is not a sequence rule.

Does not distinguish sequence rules without proper separation from non-sequence
rules. That is, does not distinguish an unset proper separation flag from a proper
separation flag which value is undefined because rule_id is the ID of a BNF rule.
Applications which want to determine whether or not a rule is a sequence rule can
use marpa_g_sequence_min() to do this. See [marpa_g_sequence_min], page 29.

Chapter 13: Grammar methods 29

Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist.

Return value: On success, 1 or 0. On soft failure, —1. On hard failure, —2.

int marpa_g_sequence_min (Marpa_-Grammar g, Marpa_Rule_1D [Function]
rule_id)
[Accessor] On success, returns the mininum length of a sequence rule. Soft fails if a
rule with ID rule_id exists, but is not a sequence rule. This soft failure can used to
test whether or not a rule is a sequence rule.

Hard fails irrecoverably if rule_id is not well-formed (a non-negative number). Also,
hard fails irrecoverably if no rule with ID rule_id exists, even when rule_id is well
formed. Note that, in its handling of the non-existence of a rule for its rule argument,
this method differs from many of the other grammar methods. Grammar methods
which take a rule ID argument more often treat the non-existence of rule for a well-
formed rule ID as a soft, recoverable, failure.

Return value: On success, the minimum length of the sequence rule with ID rule_id,
which is always non-negative. On soft failure, —1. On hard failure, —2.

Marpa_Rule_ID marpa_g_sequence_new (Marpa-Grammar g, [Function]
Marpa_Symbol_ID 1hs_id, Marpa_Symbol_ID rhs_id,
Marpa_Symbol_ID separator_id, int min, int flags)

[Mutator] When successful, adds a new sequence rule to grammar g, and return its
ID. The ID of the sequence rule will be a non-negative integer, which is unique to
that rule. All rules are numbered in the same series, so that a BNF rule will never
have the same rule ID as a sequence rule, and vice versa.

Sequence rules are “sugar” — their presence in the Libmarpa interface does not extend
its power. Every Libmarpa grammar which can be written using sequence rules can
be rewritten as a grammar without sequence rules.

The LHS of the sequence is lhs_id, and the item to be repeated on the RHS of the
sequence is rhs_id. The sequence must be repeated at least min times, where min is
0 or 1. If separator_id is non-negative, it is a separator symbol.

The LHS symbol cannot be the LHS of any other rule, whether a BNF rule or a
sequence rule. On an attempt to create an sequence rule with a duplicate LHS, this
method hard fails, with an error code of MARPA_ERR_SEQUENCE_LHS_NOT_UNIQUE.

The sequence RHS, or item, is restricted to a single symbol, and that symbol cannot
be nullable. If separator_id is a symbol, it also cannot be a nullable symbol. Nullables
on the RHS of sequence rules are prohibited because it is not completely clear what an
application intends when it asks for a sequence of items, some of which are nullable —
the most natural interpretation of this usually results in a highly ambiguous grammar.

Libmarpa allows highly ambiquous grammars and a programmer who wants a gram-
mar with sequences containing nullable items or separators can can write that gram-
mar using BNF rules. The use of BNF rules make it clearer that ambiguity is what
the programmer intended, and allows the programmer more flexibility.

If flags & MARPA_PROPER_SEPARATION is non-zero, separation is “proper”, that is, a
trailing separator is not allowed. The term proper is based on the idea that properly-
speaking, separators should actually separate items. Proper separation has no effect

Chapter 13: Grammar methods 30

at the Libmarpa level — it is tracked as a convenience for the higher-level interfaces to
Libmarpa, which may want to offer the ability to discard separators in the semantics.
(Some higher-level interfaces, in fact, may choose to discard separation by default.)
At the Libmarpa level, sequences always “keep separators”.

Return value: On success, the ID of the newly added sequence rule, which is always
non-negative. On hard failure, —2.

int marpa_g_sequence_separator (Marpa-Grammar g, [Function]
Marpa_Rule_ID rule_id)
[Accessor] On success, returns the symbol ID of the separator of the sequence rule
with ID rule_id. Soft fails if there is no separator. The causes of hard failure include
rule_id not being well-formed; rule_id not being the ID of a rule which exists; and
rule_id not being the ID a sequence rule.

Return value: On success, a symbol ID, which is always non-negative. On soft failure,
—1. On hard failure, —2.

int marpa_g_symbol_is_counted (Marpa_-Grammar g, [Function]
Marpa_Symbol_ID sym_id)
[Accessor] On success, returns a boolean whose value is 1 iff the symbol with ID
sym_id is counted. A symbol is counted iff

e it appears on the RHS of a sequence rule, or

e it is used as the separator symbol of a sequence rule.

Soft fails iff sym_id is well-formed (a non-negative integer), but a symbol with that
ID does not exist.

Return value: On success, a boolean. On soft failure, —1. On hard failure, —2.

13.7 Rank methods

Marpa_Rank marpa_g_rule_rank (Marpa_Grammar g, [Function]
Marpa_Rule_ID rule_id)
[Accessor] When successful, returns the rank of the rule with ID rule_id. When a rule
is created, its rank is initialized to the default rank of the grammar. The default rank
of the grammar is 0.

Return value: On success, returns a rule rank, and sets the error code to MARPA_ERR _
NONE. The rule rank is an integer. On hard failure, returns —2, and sets the error code
to an appropriate value, which will never be MARPA_ERR_NONE. Note that —2 is a valid
rule rank, so that when —2 is returned, the error code is the only way to distinguish
success from failure. The error code can be determined using marpa_g_error(). See
[marpa_g_error], page 64.

Marpa_Rank marpa_g_rule_rank_set (Marpa.Grammar g, [Function]
Marpa_Rule_ID rule_id, Marpa-Rank rank)
[Mutator] When successful, sets the rank of the rule with ID rule_id to rank and
returns rank.
Return value: On success, returns rank, which will be an integer, and sets the error
code to MARPA_ERR_NONE. On hard failure, returns —2, and sets the error code to

Chapter 13: Grammar methods 31

an appropriate value, which will never be MARPA_ERR_NONE. Note that —2 is a valid
rule rank, so that when —2 is returned, the error code is the only way to distinguish
success from failure. The error code can be determined using marpa_g_error(). See
[marpa_g_error|, page 64.

int marpa_g_rule_null_high (Marpa-Grammar g, [Function]
Marpa_Rule_ID rule_id)
[Accessor] On success, returns a boolean whose value is 1 iff “null ranks high” is set
in the rule with ID rule_id. When a rule is created, it has “null ranks high” set.

For more on the “null ranks high” setting, read the description of marpa_g_rule_
null_high_set (). See [marpa_g_rule_null_high_set], page 31.

Soft fails iff rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist.

Return value: On success, a boolean. On soft failure, —1. On hard failure, —2.

int marpa_g_rule_null_high_set (Marpa.Grammar g, [Function]
Marpa_Rule_ID rule_id, int flag)
[Mutator] On success,

e sets “null ranks high” in the rule with ID rule_id if the value of the boolean flag
is 1;

e unsets “null ranks high” in the rule with ID rule_id if the value of the boolean
flag is 0; and

e returns flag.

The “null ranks high” setting affects the ranking of rules with properly nullable sym-
bols on their right hand side. If a rule has properly nullable symbols on its RHS, each
instance in which it appears in a parse will have a pattern of nulled and non-nulled
symbols. Such a pattern is called a “null variant”.

If the “null ranks high” is set, nulled symbols rank high. If the “null ranks high”
is unset is the default), nulled symbols rank low. Ranking of a null variants is done
from left-to-right.

Soft fails iff rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist.
Hard fails if the grammar has been precomputed.

Return value: On success, a boolean. On soft failure, —1. On hard failure, —2.

13.8 Precomputing the Grammar

int marpa_g_has_cycle (Marpa-Grammar g) [Function]
[Accessor] On success, returns a boolean which is 1 iff g has a cycle. Cycles make a
grammar infinitely ambiguous, and are considered useless in current practice. Cycles
make processing the grammar less efficient, sometimes considerably so. Applications
will almost always want to treat cycles as mistakes on the part of the writer of the
grammar. To determine which rules are in the cycle, marpa_g_rule_is_loop() can
be used.

Return value: On success, a boolean. On hard failure, —2.

Chapter 13: Grammar methods 32

int marpa_g_is_precomputed (Marpa_Grammar g) [Function]
[Accessor] Return value: On success, a boolean which is 1 iff grammar g is precom-
puted. On hard failure, —2.

int marpa_g_precompute (Marpa_Grammar g) [Function]
[Mutator] On success, and on fully recoverable hard failure, precomputes the grammar
g. Precomputation involves running a series of grammar checks and “precomputing”
some useful information which is kept internally to save repeated calculations. Af-
ter precomputation, the grammar is “frozen” in many respects, and many grammar
mutators which succeed before precomputation will cause hard failures after pre-
computation. Precomputation is necessary for a recognizer to be generated from a
grammar.

When called, clears any events already in the event queue. May return one or more
events. The types of event that this method may return are A MARPA_EVENT_LOOP_
RULES, MARPA_EVENT_COUNTED_NULLABLE, MARPA_EVENT_NULLING_TERMINAL. All of
these events occur only on failure. Applications must be prepared for this method
to return additional events, including events which occur on success. Events may be
queried using the marpa_g_event () method. See [marpa_g_event|, page 56.

The fully recoverable hard failure is MARPA_ERR_GRAMMAR_HAS_CYCLE. Recall that
for fully recoverable hard failures this method precomputes the grammar. Most
appplications, however, will want to treat a grammar with cycles as if it were a
library-recoverable error. A MARPA_ERR_GRAMMAR_HAS_CYCLE error occurs iff a MARPA_
EVENT_LOOP_RULES event occurs. For more details on cycles, see [marpa_g_has_cycle],
page 31.

The error code MARPA_ERR_COUNTED_NULLABLE is library-recoverable. This failure
occurs when a symbol on the RHS of a sequence rule is nullable, which Libmarpa
does not allow in a grammar. Error code MARPA_ERR_COUNTED_NULLABLE occurs iff
one or more MARPA_EVENT_COUNTED_NULLABLE events occur. There is one MARPA_
EVENT_COUNTED_NULLABLE event for every symbol which is a nullable on the right
hand side of a sequence rule. An application may use these events to inform the user
of the problematic symbols, and this detail may help the user fix the grammar.

The error code item MARPA_ERR_NULLING_TERMINAL is library-recoverable. This fail-
ure occurs when a nulling symbol is also flagged as a terminal. Since terminals
cannot be of zero length, this is a logical impossibility, and Libmarpa does not al-
low nulling terminals in a grammar. Error code item MARPA_ERR_NULLING_TERMINAL
occurs iff one or more MARPA_EVENT_NULLING_TERMINAL events occur. There is one
MARPA_EVENT_NULLING_TERMINAL events for every nulling terminal in the grammar.
An application may use these events to inform the user of the problematic symbols,
and this detail may help the user fix the grammar.

Among the other error codes which may case this method to fail are the following;:
e MARPA_ERR_NO_RULES: The grammar has no rules.
e MARPA_ERR_NO_START_SYMBOL: No start symbol was specified.

e MARPA_ERR_INVALID_START_SYMBOL: A start symbol ID was specified, but it is
not the ID of a valid symbol.

e MARPA_ERR_START_NOT_LHS: The start symbol is not on the LHS of any rule.

Chapter 13: Grammar methods 33

e MARPA_ERR_UNPRODUCTIVE_START: The start symbol is not productive.

More details of these can be found under the description of the appropriate code. See
Section 21.3 [External error codes|, page 64.

Return value: On success, a non-negative number, whose value is otherwise indeter-
minate. On hard failure, —2. For the error code MARPA_ERR_GRAMMAR_HAS_CYCLE, the
hard failure is fully recoverable. For the error codes MARPA_ERR_COUNTED_NULLABLE
and MARPA_ERR_NULLING_TERMINAL, the hard failure is library-recoverable.

34

14 Recognizer methods

14.1 Recognizer overview

An archetypal application uses a recognizer to read input. To create a recognizer, use the
marpa_r_new() method. When a recognizer is no longer in use, its memory can be freed
using the marpa_r_unref () method.

To make a recognizer ready for input, use the marpa_r_start_input () method.

The recognizer starts with its current earleme at location 0. To read a token at the
current earleme, use the marpa_r_alternative() call.

To complete the processing of the current earleme, and move forward to a new one, use
the marpa_r_earleme_complete() call.

14.2 Creating a new recognizer

Marpa_Recognizer marpa_r_new (Marpa-Grammar g) [Function]
[Constructor] On success, creates a new recognizer and increments the reference count
of g, the base grammar, by one. In the new recognizer,

e the reference count will be 1;
e the furthest earleme will be 0; and
e latest and current earleme will be undefined.

Return value: On success, the newly created recognizer, which is never NULL. If g is
not precomputed, or on other hard failure, NULL.

14.3 Keeping the reference count of a recognizer

Marpa_Recognizer marpa_r_ref (Marpa-Recognizer r) [Function]
[Mutator| Increases the reference count by 1. This method is not needed by most
applications.

Return value: On success, the recognizer object, r, which is never NULL. On hard
failure, NULL.

void marpa_r_unref (Marpa_Recognizer r) [Function]
[Destructor| Decreases the reference count by 1, destroying r once the reference count
reaches zero. When r is destroyed, the reference count of its base grammar is decreased
by one. If this takes the reference count of the base grammar to zero, the base
grammar is also destroyed.

14.4 Life cycle mutators

int marpa_r_start_input (Marpa-Recognizer r) [Function]
[Mutator] When successful, does the following:

e Readies r to accept input.

Chapter 14: Recognizer methods 35

e Completes the first Earley set, which is the Earley set whose ID is 0 and which
is located at earleme O.

e Leaves the latest, current and furthest earlemes all at 0.
e Clears any events that were in the event queue before this method was called.

e If this method exhausts the parse, generates a MARPA_EVENT_EXHAUSTED event.
See Chapter 6 [Exhaustion], page 10.

e May generate one or more MARPA_EVENT_SYMBOL_NULLED, MARPA_EVENT_SYMBOL_
PREDICTED, or MARPA_EVENT_SYMBOL_EXPECTED events. See Chapter 20 [Events],
page 56.

Return value: On success, a non-negative value, whose value is otherwise indetermi-
nate. On hard failure, —2.

int marpa_r_alternative (Marpa-Recognizer r, Marpa_-Symbol_.ID [Function]
token_id, int value, int length)
The token_id argument must be the symbol ID of a terminal. The value argument
is an integer that represents the “value” of the token, and which should not be zero.
The length argument is the length of the token, which must be greater than zero.

On success, does the following, where current is the value of the current earleme
before the call and furthest is the value of the furthest earleme before the call:

e Reads a new token into r. The symbol ID of the token will be token_id. The
token will start at current and end at current+length.

e Sets the value of the furthest earleme to max (current+length, furthest).

e Leaves the values of the latest and current earlemes unchanged.

After recoverable failure, the following are the case:

e The tokens read into r are unchanged. Specifically, no new token has been read
into r.

e The values of the latest, current and furthest earlemes are unchanged.

Libmarpa allows tokens to be ambiguous. Two tokens are ambiguous if they end at
the same earleme location. If two tokens are ambiguous, Libmarpa will attempt to
produce all the parses that include either of them.

Libmarpa allows tokens to overlap. Let the notation t@s-e indicate that token t starts
at earleme s and ends at earleme e. Let t1@Qsl-el and t2@s2-e2 be two tokens such
that s1<=s2. We say that t1 and t2 overlap iff el>s2.

The value argument is not used inside Libmarpa — it is simply stored to be returned
by the valuator as a convenience for the application. In applications where the token’s
actual value is not an integer, it is expected that the application will use value as a
“virtual” value, perhaps finding the actual value by using value to index an array.
Some applications may prefer to track token values on their own, perhaps based on
the earleme location and token_id, instead of using Libmarpa’s token values.

A value of 0 does not cause a failure, but it is reserved for unvalued symbols, a
now-deprecated feature. See Section 25.1 [Valued and unvalued symbols], page 82.

Chapter 14: Recognizer methods 36

Hard fails irrecoverably with MARPA_ERR_DUPLICATE_TOKEN if the token added would
be a duplicate. Two tokens are duplicates iff all of the following are true:

e They would have the same start earleme. In other words, if marpa_
r_alternative() attempts to read them while at the same current
earleme.

e They have the same token_id.
e They have the same length.

If a token was not accepted because of its token ID, hard fails with the MARPA_ERR_
UNEXPECTED_TOKEN_ID. This hard failure is fully recoverable so that, for example, the
application may retry this method with different token IDs until it succeeds. These
retries are efficient, and are quite useable as a parsing technique — so much so we
have given the technique a name: the Ruby Slippers. The Ruby Slippers are used in
several applications.

Return value: On success, MARPA_ERR_NONE. On failure, an error code other than
MARPA_ERR_NONE. The hard failure for MARPA_ERR_UNEXPECTED_TOKEN_ID is fully
recoverable.

int marpa_r_earleme_complete (Marpa_Recognizer r) [Function]
For the purposes of this method description, we define the following:

e current is the value of the current earleme before the call of marpa_r_earleme_
complete.

e Jatest is the value of the latest earleme before the call of marpa_r_earleme_
complete.

e An “expected” terminal is one expected at a current earleme, in the same sense
that marpa_r_terminal_is_expected() determines if a terminal is “expected”
at the current earleme. See [marpa_r_terminals_expected|, page 40.

e An “anticipated” terminal is one that was accepted by the marpa_r_
alternative() to end at an earleme after the current earleme. An anticipated
terminal will have length greater than one. “Anticipated” terminals only
occur if the application is using an advanced model of input. See Chapter 23
[Advanced input models|, page 77.

On success, does the final processing for the current earleme, including the following:

e Advances the current earleme, incrementing its value by 1. That is, sets the
current earleme to current+1.

e If any token was accepted at current, creates a new Earley set which will be
the latest Earley set. After the call, the latest earleme will be equal to the new
current earleme, current+1.

e If no token was accepted at current, no Earley set is created. After the call, the
value of the latest earleme will be unchanged — that is, it will remain at latest.
Success when no tokens were accepted at current can only occur if the application
is using an advanced model of input. See Chapter 23 [Advanced input models],
page 77.

e The value of the furthest earleme is never changed by a call to marpa_r_earleme_
complete().

Chapter 14: Recognizer methods 37

Clears the event queue of any events which occured before this method was called.

May generate one or more MARPA_EVENT_SYMBOL_COMPLETED, MARPA_EVENT_
SYMBOL_NULLED, MARPA_EVENT_SYMBOL_PREDICTED, or MARPA_EVENT_SYMBOL_
EXPECTED events. See Chapter 20 [Events], page 56.

If an application-settable threshold on the number of Earley items has been
reached or exceeded, generates a MARPA_EVENT_EARLEY_ITEM_THRESHOLD event.
Often, the application will want to treat this event as if it were a library-
recoverable failure. See [marpa_r_earley_item_warning_threshold_set|, page 39.

If the parse is exhausted, triggers a MARPA_EVENT_EXHAUSTED event. Exhaustion
on success only occurs if no terminals are expected at the current earleme after
the call to this method (that is, at current+1) and no terminals are anticipated
after current+1.

On hard failure with the code MARPA_ERR_PARSE_EXHAUSTED, does the following:

Leaves the current earleme at current. The current earleme will be the same as
the furthest earleme.

The value of the furthest earleme is never changed by a call to marpa_r_earleme_
complete().

Leaves the value of the latest earleme at latest. No new Earley set is created.

Sets the parse exhausted, so that no more tokens will be accepted. See Chapter 6
[Exhaustion], page 10.

Leaves the parse in a state where no terminals are expected or anticipated.
Clears the event queue of any events which occured before the call to this method.
Triggers a MARPA_EVENT_EXHAUSTED event and no others.

Leaves valid any parses that were valid at the current or earlier earlemes. Pro-
cessing with these can continue, and it for this reason that we consider hard
failures with the code MARPA_ERR_PARSE_EXHAUSTED to be fully recoverable.

We note that exhaustion can occur when this method fails and when it succeeds.
The distinction is that, on success, the call creates a new Earley set before becoming
exhausted while, on failure, it becomes exhausted without creating a new Earley set.

Return value: On success, the number of events generated. On hard failure, —2.
Hard failure with the code MARPA_ERR_PARSE_EXHAUSTED is fully recoverable.

14.5 Location accessors

Marpa_Earleme marpa_r_current_earleme (Marpa_Recognizer r) [Function]
Return value: If input has started, the current earleme. If input has not started, —1.
Always succeeds.

Marpa_Earleme marpa_r_earleme (Marpa_Recognizer r, [Function]

Marpa_FEarley_Set_ID set_id)

In the default, token-stream model, Earley set ID and earleme are always equal, but
this is not the case in other input models. (The ID of an Earley set ID is also called
its ordinal.) If there is no Earley set whose ID is set_id, marpa_r_earleme() fails.
If set_id was negative, the error code is set to MARPA_ERR_INVALID_LOCATION. If

Chapter 14: Recognizer methods 38

set_id is greater than the ordinal of the latest Earley set, the error code is set to
MARPA_ERR_NO_EARLEY_SET_AT_LOCATION.

At this writing, there is no method for the inverse operation (conversion of an earleme
to an Earley set ID). One consideration in writing such a method is that not all
earlemes correspond to Earley sets. Applications that want to map earlemes to Earley
sets will have no trouble if they are using the standard input model — the Earley set
ID is always exactly equal to the earleme in that model. For other applications that
want an earleme-to-ID mapping, the most general method is create an ID-to-earleme
array using the marpa_r_earleme () method and invert it.

Return value: On success, the earleme corresponding to Earley set set_id. On failure,
—2.

int marpa_r_earley_set_value (Marpa_Recognizer r, [Function]
Marpa_FEarley_Set_ID earley_set)
Returns the integer value of earley_set. For more details, see the description of marpa_
r_earley_set_values().

Return value: On success, the value of earley_set. On failure, —2.

int marpa_r_earley_set_values (Marpa_Recognizer r, [Function]
Marpa_Earley_Set_ID earley_set, int* p_value, void** p_pvalue)
If p_value is non-zero, sets the location pointed to by p_value to the integer value
of the Earley set. Similarly, if p_pvalue is non-zero, sets the location pointed to by
p-pvalue to the pointer value of the Earley set.

The “value” and “pointer” of an Earley set are an arbitrary integer and an arbitrary
pointer that the application can use for its own purposes. In character-per-earleme
input models, for example, the integer can be the codepoint of the current character.
In a traditional token-per-earleme input model, they could be used to indicate the
string value of the token — the pointer could point to the start of the string, and the
integer could indicate its length.

The Earley set value and pointer can be set using the marpa_r_latest_earley_set_
values_set () method. The Earley set integer value defaults to —1, and the pointer
value defaults to NULL.

Return value: On success, returns a non-negative integer. On failure, returns —2.

unsigned int marpa_r_furthest_earleme (Marpa-Recognizer r) [Function]
Always returns the furthest earleme.

Return value: On success, the furthest earleme. Always succeeds.

Marpa_Earley_Set_ID marpa_r_latest_earley_set [Function]
(Marpa-Recognizer r)
This method returns the Earley set ID (ordinal) of the latest Earley set. Applications
that want the value of the latest earleme can convert this value using the marpa_r_
earleme () method.

Return value: On success, the ID of the latest Earley set. Always succeeds.

Chapter 14: Recognizer methods 39

int marpa_r_latest_earley_set_value_set (Marpa_Recognizer [Function]
r, int value)
Sets the integer value of the latest Earley set. For more details, see the description
of marpa_r_latest_earley_set_values_set().

Return value: On success, the new value of earley_set. On failure, —2.

int marpa_r_latest_earley_set_values_set (Marpa_Recognizer [Function]
r, int value, void* pvalue)

Sets the integer and pointer value of the latest Earley set. For more about the “integer

value” and “pointer value” of an Earley set, see the description of the marpa_r_
earley_set_values() method.

Return value: On success, returns a non-negative integer. On failure, returns —2.

14.6 Other parse status methods

int marpa_r_earley_item_warning_threshold (Marpa_Recognizer [Function]
r)
Returns the Earley item warning threshold. See [marpa_r_earley_item_warning_threshold_set],
page 39.

Return value: The Earley item warning threshold. Always succeeds.

int marpa_r_earley_item_warning_threshold_set [Function]
(Marpa_Recognizer r, int threshold)
[Mutator] On success, sets the Earley item warning threshold. The Earley item warn-
ing threshold is a number that is compared with the count of Earley items in each Ear-
ley set. When it is matched or exceeded, a MARPA_EVENT_EARLEY_ITEM_THRESHOLD
event is created. See MARPA_EVENT_EARLEY_ITEM_THRESHOLD)], page 62.

If threshold is zero or less, an unlimited number of Earley items will be allowed
without warning. This will rarely be what the user wants.

By default, Libmarpa calculates a value based on the grammar. The formula Lib-
marpa uses is the result of some experience, and most applications will be happy with
it.

What should be done when the threshold is exceeded, depends on the application,
but exceeding the threshold means that it is very likely that the time and space
resources consumed by the parse will prove excessive. This is often a sign of a bug
in the grammar. Applications often will want to smoothly shut down the parse,
in effect treating the MARPA_EVENT_EARLEY_ITEM_THRESHOLD event as equivalent to
library-recoverable hard failure.

Return value: The value that the Earley item warning threshold has after the method
call is finished. Always succeeds.

int marpa_r_is_exhausted (Marpa_Recognizer r) [Function]
A parser is “exhausted” if it cannot accept any more input. Both successful and failed
parses can be exhausted. In many grammars, the parse is always exhausted as soon
as it succeeds. Good parses may also exist at earlemes prior to the current one.

Return value: 1 if the parser is exhausted, 0 otherwise. Always succeeds.

40

int marpa_r_terminals_expected (Marpa_Recognizer r, [Function]
Marpa_Symbol_ID* buffer)
Returns a list of the ID’s of the symbols that are acceptable as tokens at the current
earleme. buffer is expected to be large enough to hold the result. This is guaranteed
to be the case if the buffer is large enough to hold a number of Marpa_Symbol_ID’s
that is greater than or equal to the number of symbols in the grammar.

Return value: On success, the number of Marpa_Symbol_ID’s in buffer. On failure,
—2.

int marpa_r_terminal_is_expected (Marpa-Recognizer r, [Function]
Marpa_Symbol_ID symbol_id)
Return values on success: If symbol_id is the ID of a valid terminal symbol that is
expected at the current earleme, a number greater than zero. If symbol_id is the ID
of a valid terminal symbol that is not expected at the current earleme, or if symbol_id
is the ID of a valid symbol that is not a terminal, zero.

Failure cases: Returns —2 on failure. It is a failure if symbol_id is not the ID of a
valid symbol.

41

15 Progress reports

An important advantage of the Marpa algorithm is the ability to easily get full information
about the state of the parse.

To start a progress report, use the marpa_r_progress_report_start () command. Only
one progress report can be in use at any one time.

To get the information in a progress report, it is necessary to step through the progress
report items. To get the data for the current progress report item, and advance to the next
one, use the marpa_r_progress_item() method.

To destroy a progress report, freeing the memory it uses, call the marpa_r_progress_
report_finish() method.

int marpa_r_progress_report_reset (Marpa_Recognizer r) [Function]
Resets the progress report. Assumes a report of the progress has already been initial-
ized at some Earley set for recognizer r, with marpa_r_progress_report_start ().
The reset progress report will be positioned before its first item.

Return value: On success, a non-negative value. On failure, —2.

int marpa_r_progress_report_start (Marpa_Recognizer r, [Function]
Marpa_FEarley_Set_ID set_id)
Initializes a report of the progress at Earley set set_id for recognizer r. If a progress
report already exists, it is destroyed and its memory is freed. Initially, the progress
report is positioned before its first item.

If no Earley set with ID set_id exists, marpa_r_progress_report_start () fails. The
error code is MARPA_ERR_INVALID_LOCATION if set_id is negative. The error code is
MARPA_ERR_NO_EARLEY_SET_AT_LOCATION if set_id is greater than the ID of the latest
Earley set.

Return value: On success, the number of report items available. If the recognizer has
not been started; if set_id does not exist; or on other failure, —2.

int marpa_r_progress_report_finish (Marpa_-Recognizer r) [Function]
Destroys the report of the progress at Earley set set_id for recognizer r, freeing the
memory and other resources. It is often not necessary to call this method. Any
previously existing progress report is destroyed automatically whenever a new progress
report is started, and when the recognizer is destroyed.

Return value: —2 if no progress report has been started, or on other failure. On
success, a non-negative value.

Marpa_Rule_ID marpa_r_progress_item (Marpa_Recognizer r, [Function]
int* position, Marpa_Earley_Set_ID* origin)
This method allows access to the data for the next item of a progress report. If there
are no more progress report items, it returns —1 as a termination indicator and sets
the error code to MARPA_ERR_PROGRESS_REPORT_EXHAUSTED. Either the termination
indicator, or the item count returned by marpa_r_progress_report_start(), can
be used to determine when the last item has been seen.

42

On success, the dot position is returned in the location pointed to by the position
argument, and the origin is returned in the location pointed to by the origin argu-
ment. On failure, the locations pointed to by the position and origin arguments are
unchanged.

Return value: On success, the rule ID of the next progress report item. If there are
no more progress report items, —1. If either the position or the origin argument is
NULL, or on other failure, —2.

43

16 Bocage methods

16.1 Overview

A bocage is structure containing the full set of parses found by processing the input ac-
cording to the grammar. The bocage structure is new with Libmarpa, but is very similar
in purpose to the more familar parse forests.

To create a bocage, use the marpa_b_new() method.

When a bocage is no longer in use, its memory can be freed using the marpa_b_unref ()
method.

16.2 Creating a new bocage

Marpa_Bocage marpa_b_new (Marpa_Recognizer r, [Function]
Marpa_FEarley_Set_ID earley_set_ID)

Creates a new bocage object, with a reference count of 1. The reference count of its
parent recognizer object, r, is increased by 1. If earley_set_ID is —1, the Earley set
at the current earleme is used, if there is one.
If earley_set_ID is —1 and there is no Earley set at the current earleme; or if ear-
ley_set_ID is —1 and there is no parse ending at Earley set earley_set_ID, marpa_b_
new () fails and the error code is set to MARPA_ERR_NO_PARSE.

Success return value: On success, the new bocage object. On failure, NULL.

16.3 Reference counting

Marpa_Bocage marpa_b_ref (Marpa-Bocage b) [Function]
Increases the reference count by 1. Not needed by most applications.

Return value: On success, b. On failure, NULL.

void marpa_b_unref (Marpa_Bocage b) [Function]
Decreases the reference count by 1, destroying b once the reference count reaches zero.
When b is destroyed, the reference count of its parent recognizer is decreased by 1. If
this takes the reference count of the parent recognizer to zero, it too is destroyed. If
the parent recognizer is destroyed, the reference count of its base grammar is decreased
by 1. If this takes the reference count of the base grammar to zero, it too is destroyed.

16.4 Accessors

int marpa_b_ambiguity_metric (Marpa-Bocage b) [Function]
Returns an ambiguity metric. The metric is 1 is the parse is unambiguous. If the
metric is 2 or greater, the parse is ambiguous. It was originally intended to have
values greater than 2 be an cheaply computed estimate of the degree of ambiguity,
but a satisfactory scheme for this has yet to be implemented.

Return value on success: 1 if the bocage is not for an ambiguous parse; 2 or greater
if the bocage is for an ambiguous parse.

Failures: On failure, —2.

44

int marpa_b_is_null (Marpa_Bocage b) [Function]
Return value on success: A number greater than or equal to 1 if the bocage is for a
null parse; otherwise, 0.

Failures: On failure, —2.

45

17 Ordering methods

17.1 Overview

Before iterating the parses in the bocage, they must be ordered. To create an ordering, use
the marpa_o_new() method. When an ordering is no longer in use, its memory can be freed
using the marpa_o_unref () method.

An ordering is frozen once the first tree iterator is created using it. A frozen ordering
cannot be changed.

As of this writing, the only methods to order parses are internal and undocumented.
This is expected to change.

17.2 Creating an ordering

Marpa_Order marpa_o_new (Marpa_Bocage b) [Function]
Creates a new ordering object, with a reference count of 1. The reference count of its
parent bocage object, b, is increased by 1.

Return value: On success, the new ordering object. On failure, NULL.

17.3 Reference counting

Marpa_Order marpa_o_ref (Marpa-Order o) [Function]
Increases the reference count by 1. Not needed by most applications.

Return value: On success, o. On failure, NULL.

void marpa_o_unref (Marpa_Order o) [Function]
Decreases the reference count by 1, destroying o once the reference count reaches zero.
Beginning with o’s parent bocage, Libmarpa then proceeds up the chain of parent
objects. Every time a child is destroyed, the reference count of its parent is decreased
by 1. Every time the reference count of an object is decreased by 1, if that reference
count is now zero, that object is destroyed. Libmarpa follows this chain of decrements
and destructions as required, all the way back to the base grammar, if necessary.

17.4 Accessors

int marpa_o_ambiguity_metric (Marpa_Order o) [Function]
Returns an ambiguity metric. The metric is 1 is the parse is unambiguous. If the
metric is 2 or greater, the parse is ambiguous. It was originally intended to have
values greater than 2 be an cheaply computed estimate of the degree of ambiguity,
but a satisfactory scheme for this has yet to be implemented.
If the ordering is not already frozen, it will be frozen on return from marpa_o_
ambiguity_metric(). marpa_o_ambiguity_metric() is considered an “accessor”,
because it is assumed that the ordering is frozen when marpa_o_ambiguity_metric()
is called.
Return value on success: 1 if the ordering is not for an ambiguous parse; 2 or greater
if the ordering is for an ambiguous parse.

Chapter 17: Ordering methods 46

Failures: On failure, —2.

int marpa_o_is_null (Marpa_Order o) [Function]
Return value on success: A number greater than or equal to 1 if the ordering is for a
null parse; otherwise, 0.

Failures: On failure, —2.

17.5 Non-default ordering

int marpa_o_high_rank_only_set (Marpa_Order o, int flag) [Function]

int marpa_o_high_rank_only (Marpa_Order o) [Function]
These methods, respectively, set and query the “high rank only” flag of ordering o.
A flag of 1 indicates that, when ranking, all choices should be discarded except those
of the highest rank. A flag of 0 indicates that no choices should be discarded on the
basis of their rank.

A value of 1 is the default. The value of the “high rank only” flag has no effect unless
ranking has been turned on using the marpa_o_rank() method.

Return value: On success, the value of the “high rank only” flag after the call. On
failure, —2.

int marpa_o_rank (Marpa_Order o) [Function]
By default, the ordering of parse trees is arbitrary. This method causes the ordering
to be ranked according to the ranks of symbols and rules, the “null ranks high” flags
of the rules, and the “high rank only” flag of the ordering. Once this method returns,
the ordering is frozen.

Return value: On success, a non-negative value. On failure, —2.

47

18 Tree methods

18.1 Overview

Once the bocage has an ordering, the parses trees can be iterated. Marpa’s parse tree
iterators iterate the parse trees contained in a bocage object. In Libmarpa, “parse tree
iterators” are usually just called trees.

To create a tree, use the marpa_t_new() method. A newly created tree iterator is
positioned before the first parse tree. When a tree iterator is no longer in use, its memory
can be freed using the marpa_t_unref () method.

To position a newly created tree iterator at the first parse tree, use the marpa_t_next ()
method. Once the tree iterator is positioned at a parse tree, the same marpa_t_next ()
method is used to position it to the next parse tree.

18.2 Creating a new tree iterator

Marpa_Tree marpa_t_new (Marpa_Order o) [Function]
Creates a new tree iterator, with a reference count of 1. The reference count of its
parent ordering object, o, is increased by 1.

When initialized, a tree iterator is positioned before the first parse tree. To position
the tree iterator to the first parse, the application must call marpa_t_next ().

Return value: On success, a newly created tree. On failure, NULL.

18.3 Reference counting

Marpa_Tree marpa_t_ref (Marpa_Tree t) [Function]
Increases the reference count by 1. Not needed by most applications.

Return value: On success, t. On failure, NULL.

void marpa_t_unref (Marpa_Tree t) [Function]
Decreases the reference count by 1, destroying t once the reference count reaches zero.
Beginning with t’s parent ordering, Libmarpa then proceeds up the chain of parent
objects. Every time a child is destroyed, the reference count of its parent is decreased
by 1. Every time the reference count of an object is decreased by 1, if that reference
count is now zero, that object is destroyed. Libmarpa follows this chain of decrements
and destructions as required, all the way back to the base grammar, if necessary.

18.4 Iterating through the trees

int marpa_t_next (Marpa_Tree t) [Function]
Positions t at the next parse tree in the iteration. Tree iterators are initialized to the
position before the first parse tree, so this method must be called before creating a
valuator from a tree.

If a tree iterator is positioned after the last parse, the tree is said to be “exhausted”.
A tree iterator for a bocage with no parse trees is considered to be “exhausted”

48

when initialized. If the tree iterator is exhausted, marpa_t_next() returns —1 as a
termination indicator, and sets the error code to MARPA_ERR_TREE_EXHAUSTED.

Return value: On success, a non-negative value. If the tree iterator is exhausted, —1.
On failure, —2.

int marpa_t_parse_count (Marpa_Tree t) [Function]
The parse counter counts the number of parse trees traversed so far. The count
includes the current iteration of the tree, so that a value of 0 indicates that the tree
iterator is at its initialized position, before the first parse tree.

Return value: The number of parses traversed so far. Always succeeds.

49

19 Value methods

19.1 Overview

The archetypal application needs a value object (or valuator) to produce the value of the
parse. To create a valuator, use the marpa_v_new() method. When a valuator is no longer
in use, its memory can be freed using the marpa_v_unref () method.

The application is required to maintain the stack, and the application is also required
to implement most of the semantics, including the evaluation of rules. Libmarpa’s valuator
provides instructions to the application on how to manipulate the stack. To iterate through
this series of instructions, use the marpa_v_step() method.

When successful, marpa_v_step() returns the type of step. Most step types have values
associated with them. To access these values use the methods described in the section
Section 19.9 [Basic step accessors|, page 54. How to perform the steps is described in the
sections Section 19.2 [How to use the valuator|, page 49, and Section 19.7 [Stepping through
the valuator]|, page 53.

19.2 How to use the valuator

Libmarpa’s valuator provides the application with “steps”, which are instructions for stack
manipulation. Libmarpa itself does not maintain a stack. This leaves the upper layer in
total control of the stack and the values which are placed on it.

As example may make this clearer. Suppose the evalution is at a place in the parse tree
where an addition is being performed. Libmarpa does not know that the operation is an
addition. It will tell the application that rule number R is to be applied to the arguments
at stack locations N and N+1, and that the result is to placed in stack location N.

In this system the application keeps track of the semantics for all rules, so it looks up
rule R and determines that it is an addition. The application can do this by using R as
an index into an array of callbacks, or by any other method it chooses. Let’s assume a
callback implements the semantics for rule R. Libmarpa has told the application that two
arguments are available for this operation, and that they are at locations N and N+1 in
the stack. They might be the numbers 42 and 711. So the callback is called with its two
arguments, and produces a return value, let’s say, 753. Libmarpa has told the application
that the result belongs at location NN in the stack, so the application writes 753 to location
N.

Since Libmarpa knows nothing about the semantics, the operation for rule R could be
string concatenation instead of addition. Or, if it is addition, it could allow for its arguments
to be floating point or complex numbers. Since the application maintains the stack, it is
up to the application whether the stack contains integers, strings, complex numbers, or
polymorphic objects which are capable of being any of these things and more.

19.3 Advantages of step-driven valuation

Step-driven valuation hides Libmarpa’s grammar rewrites from the application, and is quite
efficient. Libmarpa knows which rules are sequences. Libmarpa optimizes stack manipu-
lations based on this knowledge. Long sequences are very common in practical grammars.

Chapter 19: Value methods 50

For these, the stack manipulations suggested by Libmarpa’s step-driven valuator will be
significantly faster than the traditional stack evaluation algorithm.

Step-driven evalution has another advantage. To illustrate this, consider what is a very
common case: The semantics are implemented in a higher-level language, using callbacks.
If Libmarpa did not use step-driven valuation, it would need to provide for this case. But
for generality, Libmarpa would have to deal in C callbacks. Therefore, a middle layer would
have to create C language wrappers for the callbacks in the higher level language.

The implementation that results is this: The higher level language would need to wrap
each callback in C. When calling Libmarpa, it would pass the wrappered callback. Libmarpa
would then need to call the C language “wrappered” callback. Next, the wrapper would
call the higher-level language callback. The return value, which would be data native to the
higher-level language, would need to be passed to the C language wrapper, which will need
to make arrangements for it to be based back to the higher-level language when appropriate.

A setup like this is not terribly efficient. And exception handling across language bound-
aries would be very tricky. But neither of these is the worst problem.

Callbacks are hard to debug. Wrappered callbacks are even worse. Calls made across
language boundaries are harder yet to debug. In the system described above, by the time
a return value is finally consumed, a language boundary will have been crossed four times.

How do Libmarpa users deal with difficulties like this? Usually, by doing the absolute
minimum possible in the callbacks. A horrific debugging enviroment can become a man-
ageable one if there is next to no code to be debugged. And this can be accomplished by
doing as much as possible in pre- and post-processing.

In essence, callbacks force applications to do most of the programming via side effects.
One need not be a functional programming purist to find this a very undesirable style of
design to force on an application. But the ability to debug can make the difference between
code that does work and code that does not. Unfairly or not, code is rarely considered
well-designed when it does not work.

So, while step-driven valuation seems a roundabout approach, it is simpler and more
direct than the likely alternatives. And there is something to be said for pushing semantics
up to the higher levels — they can be expected to know more about it.

These advantages of step-driven valuation are strictly in the context of a low-level inter-
face. The author is under no illusion that direct use of Libmarpa’s valuator will be found
satisfactory by most Libmarpa users, even those using the C language. The author certainly
avoids using step-driven valuation directly. Libmarpa’s valuator is intended to be used via
an upper layer, one which does know about semantics.

19.4 Maintaining the stack

This section discusses in detail the requirements for maintaining the stack. In some cases,
such as implementation using a Perl array, fulfilling these requirements is trivial. Perl auto-
extends its arrays, and initializes the element values, on every read or write. For the C
programmer, things are not quite so easy.

In this section, we will assume a C90 or C99 standard-conformant C application. This
assumption is convenient on two grounds. First, this will be the intended use for many

Chapter 19: Value methods 51

readers. Second, standard-conformant C is a “worst case”. Any issue faced by a programmer
of another environment is likely to also be one that must be solved by the C programmer.

Libmarpa often optimizes away unnecessary stack writes to stack locations. When it
does so, it will not necessarily optimize away all reads to that stack location. This means
that a location’s first access, as suggested by the Libmarpa step instructions, may be a read.
This possibility requires a special awareness from the C programmer, as discussed in the
sections Section 19.4.1 [Sizing the stack], page 51, and Section 19.4.2 [Initializing locations
in the stack], page 51.

In the discussions in this document, stack locations are non-negative integers. The
bottom of the stack is location 0. In moving from the bottom of the stack to the top, the
numbers increase. Stack location Y is said to be “greater” than stack location X if stack
location Y is closer to the top of stack than location X, and therefore stack locations are
considered greater or lesser if the integers that represent them are greater or lesser. Another
way to state that a stack location Y is greater (lesser) than stack location X is to say that
a stack location Y is later (earlier) than stack location X.

19.4.1 Sizing the stack

If an implementation applies Libmarpa’s step instructions literally, using a physical stack, it
must make sure the stack is large enough. Specifically, the application must do the following

e Ensure location 0 exists — in other words that the stack is at least length 1.
e For MARPA_STEP_TOKEN steps, ensure that location marpa_v_result(v) exists.

e For MARPA_STEP_NULLING_SYMBOL steps, ensure that location marpa_v_result(v) ex-
ists.

e For MARPA_STEP_RULE steps, ensure that stack locations from marpa_v_arg_0(v) to
marpa_v_arg_n(v) exist.

Three aspects of these requirements deserve special mention. First, note that the require-
ment for a MARPA_STEP_RULE is that the application size the stack to include the arguments
to be read. Because stack writes may be optimized away, an application, when reading,
cannot assume that the stack was sized appropriately by a prior write. The first access to
a new stack location may be a read.

Second, note that there is no explicit requirement that the application size the stack to
include the location for the result of the MARPA_STEP_RULE step. An application is allowed
to assume that result will go into one of the locations that were read.

Third, special note should be made of the requirement that location 0 exist. By conven-
tion, the parse result resides in location 0 of the stack. Because of potential optimizations,
an application cannot assume that it will receive a Libmarpa step instruction that either
reads from or writes to location 0.

19.4.2 Initializing locations in the stack

Write optimizations also creates issues for implementations which require data to be initial-
ized before reading. Every fully standard-conforming C application is such an implementa-
tion. Both C90 and C99 allow “trap values”, and therefore conforming applications must
be prepared for an uninitialized location to contain one of those. Reading a trap value may
cause an abend. (It is safe, in standard-conforming C, to write to a location containing a
trap value.)

Chapter 19: Value methods 52

The requirement that locations be initialized before reading occurs in other implemen-
tations. Any implementation that has a “universe” of “safe” values, may require special
precautions. The required precautions may amount to a need to initialize “uninitialized”
values. A practical example might be an implementation that expects all locations to
contain a pointer which it can safely indirect from. In such implementations, just as in
standard-conformant C, every stack location needs to be initialized before being read.

Due to write optimizations, an application cannot rely on Libmarpa’s step instructions
to initialize every stack location before its first read. One way to safely deal with the
initialization of stack locations, is to do all of the following:

e When starting evaluation, ensure that the stack contains at least location 0.
e Also, when starting evaluation, initialize every location in the stack.

e Whenever the stack is extended, initialize every stack location added.

Applications which try to optimize out some of these initializations need to be aware that
an application can never assume that activity in the stack is safely “beyond” an uninitialized
location. Libmarpa steps often revisit earlier sections of the stack, and these revisits may
include reads of previously unvisited stack locations.

19.5 Creating a new valuator

Marpa_Value marpa_v_new (Marpa_Tree t) [Function]
Creates a new valuator. The parent object of the new valuator will be the tree iterator
t, and the reference count of the new valuator will be 1. The reference count of t is
increased by 1.

The parent tree iterator is “paused”, so that the tree iterator cannot move on to a
new parse tree until the valuator is destroyed. Many valuators of the same parse tree
can exist at once. A tree iterator is “unpaused” when all of the valuators of that tree
iterator are destroyed.

Return value: On success, the newly created valuator. On failure, NULL.

19.6 Reference counting

Marpa_Value marpa_v_ref (Marpa_Value v) [Function]
Increases the reference count by 1. Not needed by most applications.

Return value: On success, v. On failure, NULL.

void marpa_v_unref (Marpa_Value v) [Function]
Decreases the reference count by 1, destroying v once the reference count reaches
zero. Beginning with v’s parent tree, Libmarpa then proceeds up the chain of parent
objects. Every time a child is destroyed, the reference count of its parent is decreased
by 1. Every time the reference count of an object is decreased by 1, if that reference
count is now zero, that object is destroyed. Libmarpa follows this chain of decrements
and destructions as required, all the way back to the base grammar, if necessary.

Chapter 19: Value methods 53

19.7 Stepping through the valuator

Marpa_Step_Type marpa_v_step (Marpa-Value v) [Function]
This method “steps through” the valuator. The return value is a Marpa_Step_Type,
an integer which indicates the type of step. How the application is expected to act on
each step is described below (Section 19.8 [Valuator steps by type], page 53). When
the iteration through the steps is finished, marpa_v_step() returns MARPA_STEP_
INACTIVE.

Return value: On success, a Marpa_Step_Type, which always be a non-negative inte-
ger. On failure, —2.

19.8 Valuator steps by type

Marpa_Step_Type MARPA_STEP_RULE [Macro]
The semantics of a rule should be performed. The application can find the value of
the rule’s children in the stack locations from marpa_v_arg 0(v) to marpa_v_arg_
n(v). The semantics for the rule whose ID is marpa_v_rule(v) should be executed
on these child values, and the result placed in marpa_v_result(v). In the case of
a MARPA_STEP_RULE step, the stack location of marpa_v_result(v) is guaranteed to
be equal to marpa_v_arg_0(v).

Marpa_Step_Type MARPA_STEP_TOKEN [Macro]
The semantics of a non-null token should be performed. The application’s value for
the token whose ID is marpa_v_token(v) should be placed in stack location marpa_
v_result(v). Its value according to Libmarpa will be in marpa_v_token_value(v).

Marpa_Step_Type MARPA_STEP_NULLING_SYMBOL [Macro]
The semantics for a nulling symbol should be performed. The ID of the symbol
is marpa_v_symbol(v) and its value should be placed in stack location marpa_v_
result(v).

Marpa_Step_Type MARPA_STEP_INACTIVE [Macro]
The valuator has gone through all of its steps and is now inactive. The value of the
parse will be in stack location 0. Because of optimizations, it is possible for valuator
to immediately became inactive — MARPA_STEP_INACTIVE could be both the first and
last step.

Marpa_Step_Type MARPA_STEP_INITIAL [Macro]
The valuator is new and has yet to go through any steps.

Marpa_Step_Type MARPA_STEP_INTERNAL1 [Macro]
Marpa_Step_Type MARPA_STEP_INTERNAL2 [Macro]
Marpa_Step_Type MARPA_STEP_TRACE [Macro]

These step types are reserved for internal purposes.

Chapter 19: Value methods 54

19.9 Basic step accessors

The basic step accessors are so called because their information is basic to the stack ma-
nipulation. The basic step accessors are implemented as macros. They always succeed.

int marpa_v_arg_0 (Marpa-Value v) [Macro]
For a MARPA_STEP_RULE step, returns the stack location where the value of first child
can be found.

int marpa_v_arg_n (Marpa_Value v) [Macro]
For a MARPA_STEP_RULE step, returns the stack location where the value of the last
child can be found.

int marpa_v_result (Marpa_Value v) [Macro]
For MARPA_STEP_RULE, MARPA_STEP_TOKEN, and MARPA_STEP_NULLING_SYMBOL steps,
returns the stack location where the result of the semantics should be placed.

Marpa_Rule_ID marpa_v_rule (Marpa_Value v) [Macro]
For the MARPA_STEP_RULE step, returns the ID of the rule.

Marpa_Step_Type marpa_v_step_type (Marpa-Value v) [Macro]
Returns the current step type: MARPA_STEP_TOKEN, MARPA_STEP_RULE, etc. Usually
not needed since this is also the return value of marpa_v_step().

Marpa_Symbol_ID marpa_v_symbol (Marpa_Value v) [Macro]
For the MARPA_STEP_NULLING_SYMBOL step, returns the ID of the symbol. The value
returned is the same as that returned by the marpa_v_token() macro.

Marpa_Symbol_ID marpa_v_token (Marpa-Value v) [Macro]
For the MARPA_STEP_TOKEN step, returns the ID of the token. The value returned is
the same as that returned by the marpa_v_symbol () macro.

int marpa_v_token_value (Marpa_Value v) [Macro]
For the MARPA_STEP_TOKEN step, returns the integer which is (or which represents)
the value of the token.

19.10 Other step accessors

This section contains the step accessors that are not basic to stack manipulation, but which
provide other useful information about the parse. These step accessors are implemented as
macros.

All of these accessors always succeed, but if called when they are irrelevant they return
an unspecified value. In this context, an “unspecified value” is a value that is either —1 or
the ID of a valid Earley set, but which is otherwise unpredictable.

Marpa_Earley_Set_ID marpa_v_es_id (Marpa_Value v) [Macro]
Return value: If the current step type is MARPA_STEP_RULE, the Earley Set ordinal
where the rule ends. If the current step type is MARPA_STEP_TOKEN or MARPA_STEP_
NULLING_SYMBOL, the Earley Set ordinal where the symbol ends. If the current step
type is anything else, an unspecified value.

95

Marpa_Earley_Set_ID marpa_v_rule_start_es_id (Marpa_-Value v) [Macro]
Return value: If the current step type is MARPA_STEP_RULE, the Earley Set ordinal
where the rule begins. If the current step type is anything else, an unspecified value.

Marpa_Earley_Set_ID marpa_v_token_start_es_id (Marpa_Value v) [Macro]
Return value: If the current step type is MARPA_STEP_TOKEN or MARPA_STEP_NULLING_
SYMBOL, the Earley Set ordinal where the token begins. If the current step type is
anything else, an unspecified value.

56

20 Events

20.1 Overview

Events are generated by the marpa_g_precompute (), marpa_r_earleme_complete(), and
marpa_r_start_input () methods. The methods are called event-active. Event-active
methods always clear all previous events, so that after an event-active method the only
events available will be those generated by that method.

Some Libmarpa methods clear the event queue. The user is expected to query events
immediately after the method that generated them. We note especially that events are kept
in the base grammar, so that multiple recognizers using the same base grammar overwrite
each other’s events.

To find out how many events were generated by the last event-active method, use the
marpa_g_event_count () method.

To query a specific event, use the marpa_g_event () and marpa_g_event_value () meth-
ods.

In reading this chapter, we will need to be aware that it contains a mixture of grammar
and recognizer methods.

20.2 Basic event accessors

Marpa_Event_Type marpa_g_event (Marpa.Grammar g, [Function]
Marpa_Event* event, int ix)
On success, the type of the ix’th event is returned and the data for the ix’th event is
placed in the location pointed to by event.

Event indexes are in sequence. Valid events will be in the range from 0 to n, where n
is one less than the event count. The event count can be queried using the marpa_g_
event_count () method.

Return value: On success, the type of event ix. If there is no ix’th event, if ix is
negative, or on other failure, —2. On failure, the locations pointed to by event are
not changed.

int marpa_g_event_count (Marpa-Grammar g) [Function]
Return value: On success, the number of events. On failure, —2.

int marpa_g_event_value (Marpa_Event* event) [Macro]
This macro provides access to the “value” of the event. The semantics of the value
varies according to the type of the event, and is described in the section on event
codes (Section 20.7 [Event codes|, page 62).

20.3 Completion events

int marpa_g_completion_symbol_activate (Marpa-Grammar g, [Function]
Marpa_Symbol_ID sym_id, int reactivate)

Allows the user to deactivate and reactivate symbol completion events in the grammar.

When a recognizer is created, the activation status of each of its events is initialized

Chapter 20: Events 57

to the activation status of that event in the base grammar. If reactivate is zero, the
event is deactivated in the grammar. If reactivate is one, the event is activated in the
grammar.

Symbol completion events are active by default if the symbol was set up for completion
events in the grammar. If a symbol was not set up for completion events in the
grammar, symbol completion events are inactive by default and any attempt to change
that is a fatal error.

The activation status of a completion event in the grammar can only be changed
if the symbol is marked as a completion event symbol in the grammar, and before
the grammar is precomputed. However, if a symbol is marked as a completion event
symbol in the recognizer, the completion event can be deactivated and reactivated in
the recognizer.

Success cases: On success, the method returns the value of reactivate. The method
succeeds trivially if the symbol is already set as indicated by reactivate.

Failure cases: If the active status of the completion event for sym_id cannot be set as
indicated by reactivate, the method fails. On failure, —2 is returned.

int marpa_r_completion_symbol_activate (Marpa-Recognizer r, [Function]
Marpa_Symbol_ID sym_id, int reactivate)
Allows the user to deactivate and reactivate symbol completion events in the recog-
nizer. If reactivate is zero, the event is deactivated. If reactivate is one, the event is
activated.

Symbol completion events are active by default if the symbol was set up for completion
events in the grammar. If a symbol was not set up for completion events in the
grammar, symbol completion events are inactive by default and any attempt to change
that is a fatal error.

Success cases: On success, the method returns the value of reactivate. The method
succeeds trivially if the symbol is already set as indicated by reactivate.

Failure cases: If the active status of the completion event for sym_id cannot be set as
indicated by reactivate, the method fails. On failure, —2 is returned.

int marpa_g_symbol_is_completion_event (Marpa-Grammar g, [Function]
Marpa_Symbol_ID sym_id)
int marpa_g_symbol_is_completion_event_set ([Function]

Marpa_Grammar g, Marpa_Symbol_ID sym_id, int value)
Libmarpa can be set up to generate an MARPA_EVENT_SYMBOL_COMPLETED event when-
ever the symbol is completed. A symbol is said to be completed when a non-nulling
rule with that symbol on its LHS is completed.

For completion events to occur, the symbol must be marked as a completion event
symbol. The marpa_g_symbol_is_completion_event_set () function marks symbol
sym_id as a completion event symbol if value is 1, and unmarks it it as a completion
event symbol if value is 0. The marpa_g_symbol_is_completion_event () method
returns the current value of the completion event marking for symbol sym_id.
Marking a completion event sets its activation status to on. Unmarking a completion
event sets its activation status to off. The completion event marking cannot be
changed once the grammar is precomputed.

Chapter 20: Events 58

If a completion event is marked, its activation status can be changed using the marpa_
g_completion_symbol_activate() method. Note that, if a symbol is marked as a
completion event symbol in the recognizer, its completion event can be deactivated
and reactivated in the recognizer.

Nulled rules and symbols will never cause completion events. Nullable symbols may
be marked as completion event symbols, but this will have an effect only when the
symbol is not nulled. Nulling symbols may be marked as completion event symbols,
but no completion events will ever be generated for a nulling symbol. Note that
this implies at no completion event will ever be generated at earleme 0, the start of
parsing.

Success: On success, 1 if symbol sym_id is a completion event symbol after the call,
0 otherwise.

Failures: If sym_id is well-formed, but there is no such symbol, —1. If the grammar
g is precomputed; or on other failure, —2.

20.4 Symbol nulled events

int marpa_g_nulled_symbol_activate (Marpa-Grammar g, [Function]
Marpa_Symbol_ID sym_id, int reactivate)
Allows the user to deactivate and reactivate symbol nulled events in the grammar.
When a recognizer is created, the activation status of each of its events is initialized
to the activation status of that event in the base grammar. If reactivate is zero, the
event is deactivated in the grammar. If reactivate is one, the event is activated in the
grammar.

Symbol nulled events are active by default if the symbol was set up for nulled events
in the grammar. If a symbol was not set up for nulled events in the grammar, symbol
nulled events are inactive by default and any attempt to change that is a fatal error.

The activation status of a nulled event in the grammar can only be changed if the
symbol is marked as a nulled event symbol in the grammar, and before the grammar
is precomputed. However, if a symbol is marked as a nulled event symbol in the
recognizer, the nulled event can be deactivated and reactivated in the recognizer.

Success cases: On success, the method returns the value of reactivate. The method
succeeds trivially if the symbol is already set as indicated by reactivate.

Failure cases: If the active status of the nulled event for sym_id cannot be set as
indicated by reactivate, the method fails. On failure, —2 is returned.

int marpa_r_nulled_symbol_activate (Marpa_Recognizer r, [Function]
Marpa_Symbol_ID sym_id, int boolean)

Allows the user to deactivate and reactivate symbol nulled events in the recognizer.

If boolean is zero, the event is deactivated. If boolean is one, the event is activated.

Symbol nulled events are active by default if the symbol was set up for nulled events
in the grammar. If a symbol was not set up for nulled events in the grammar, symbol
nulled events are inactive by default and any attempt to change that is a fatal error.

Success cases: On success, the method returns the value of boolean. The method
succeeds trivially if the symbol is already set as indicated by boolean.

Chapter 20: Events 59

Failure cases: If the active status of the nulled event for sym_id cannot be set as
indicated by boolean, the method fails. On failure, —2 is returned.

int marpa_g_symbol_is_nulled_event (Marpa-Grammar g, [Function]
Marpa_Symbol_ID sym_id)
int marpa_g_symbol_is_nulled_event_set (Marpa-Grammar g, [Function]

Marpa_Symbol_ID sym_id, int value)
Libmarpa can set up to generate an MARPA_EVENT_SYMBOL_NULLED event whenever
the symbol is nulled. A symbol is said to be nulled when a zero length instance of
that symbol is recognized.

For nulled events to occur, the symbol must be marked as a nulled event symbol.
The marpa_g_symbol_is_nulled_event_set() function marks symbol sym_id as a
nulled event symbol if value is 1, and unmarks it it as a nulled event symbol if value
is 0. The marpa_g_symbol_is_nulled_event () method returns the current value of
the nulled event marking for symbol sym_id.

Marking a nulled event sets its activation status to on. Unmarking a nulled event
sets its activation status to off. The nulled event marking cannot be changed once
the grammar is precomputed.

If a nulled event is marked, its activation status can be changed using the marpa_g_
nulled_symbol_activate() method. Note that, if a symbol is marked as a nulled
event symbol in the recognizer, its nulled event can be deactivated and reactivated in
the recognizer.

As a reminder, a symbol instance is a symbol at a specific location in the input, and
with a specific length. Also, whenever a nulled symbol instance is recognized at a
location, it is acceptable at that location, and vice versa.

When a symbol instance is recognized at a location, it will generate a nulled event or a
prediction event, but never both. A symbol instance of zero length, when recognized
at a location, generates a nulled event at that location, and does not generate a com-
pletion event. A symbol instance of non-zero length, when acceptable at a location,
generates a completion event at that location, and does not generate a nulled event.

When a symbol instance is acceptable at a location, it will generate a nulled event or a
prediction event, but never both. A symbol instance of zero length, when acceptable
at a location, generates a nulled event at that location, and does not generate a
prediction event. A symbol instance of non-zero length, when acceptable at a location,
generates a prediction event at that location, and does not generate a nulled event.

While it is not possible for a symbol instance to generate both a nulled event and
a completion event at a location, it is quite possible that a symbol might generate
both kinds of event at that location. This is because multiple instances of the same
symbol may be recognized at a given location, and these instances will have different
lengths. If one instance is recognized at a given location as zero length and a second,
non-zero-length, instance is recognized at the same location, the first will generate
only nulled events, while the second will generate only completion events. For similar
reasons, while a symbol instance will never generate both a null event and a prediction
event at a location, multiple instances of the same symbol may do so.

Zero length derivations can be ambiguous. When a zero length symbol is recognized,
all of its zero-length derivations are also considered to be recognized.

Chapter 20: Events 60

The marpa_g_symbol_is_nulled_event_set() method will mark a symbol as a
nulled event symbol, even if the symbol is non-nullable. This is convenient, for exam-
ple, for automatically generated grammars. Applications which wish to treat it as a
failure if there is an attempt to mark a non-nullable symbol as a nulled event symbol,
can check for this case using the marpa_g_symbol_is_nullable() method.

Success: On success, 1 if symbol sym_id is a nulled event symbol after the call, 0
otherwise.

Failures: If sym_id is well-formed, but there is no such symbol, —1. If the grammar
g is precomputed; or on other failure, —2.

20.5 Prediction events

int marpa_g_prediction_symbol_activate (Marpa-Grammar g, [Function]
Marpa_Symbol_ID sym_id, int reactivate)
Allows the user to deactivate and reactivate symbol prediction events in the grammar.
When a recognizer is created, the activation status of each of its events is initialized
to the activation status of that event in the base grammar. If reactivate is zero, the
event is deactivated in the grammar. If reactivate is one, the event is activated in the
grammar.

Symbol prediction events are active by default if the symbol was set up for prediction
events in the grammar. If a symbol was not set up for prediction events in the
grammar, symbol prediction events are inactive by default and any attempt to change
that is a fatal error.

The activation status of a prediction event in the grammar can only be changed
if the symbol is marked as a prediction event symbol in the grammar, and before
the grammar is precomputed. However, if a symbol is marked as a prediction event
symbol in the recognizer, the prediction event can be deactivated and reactivated in
the recognizer.

Success cases: On success, the method returns the value of reactivate. The method
succeeds trivially if the symbol is already set as indicated by reactivate.

Failure cases: If the active status of the prediction event for sym_id cannot be set as
indicated by reactivate, the method fails. On failure, —2 is returned.

int marpa_r_prediction_symbol_activate (Marpa-Recognizer r, [Function]
Marpa_Symbol_ID sym_id, int boolean)
Allows the user to deactivate and reactivate symbol prediction events in the recog-
nizer. If boolean is zero, the event is deactivated. If boolean is one, the event is
activated.

Symbol prediction events are active by default if the symbol was set up for prediction
events in the grammar. If a symbol was not set up for prediction events in the
grammar, symbol prediction events are inactive by default and any attempt to change
that is a fatal error.

Success cases: On success, the method returns the value of boolean. The method
succeeds trivially if the symbol is already set as indicated by boolean.

Failure cases: If the active status of the prediction event for sym_id cannot be set as
indicated by boolean, the method fails. On failure, —2 is returned.

Chapter 20: Events 61

int marpa_g_symbol_is_prediction_event (Marpa-Grammar g, [Function]
Marpa_Symbol_ID sym_id)
int marpa_g_symbol_is_prediction_event_set ([Function]

Marpa_Grammar g, Marpa_-Symbol_ID sym_id, int value)
Libmarpa can be set up to generate a MARPA_EVENT_SYMBOL_PREDICTED event when
a non-nulled symbol is predicted. A non-nulled symbol is said to be predicted when a
instance of it is acceptable at the current earleme according to the grammar. Nulled
symbols do not generate predictions.

For predicted events to occur, the symbol must be marked as a predicted event symbol.
The marpa_g_symbol_is_predicted_event_set () function marks symbol sym_id as
a predicted event symbol if value is 1, and unmarks it it as a predicted event symbol if
value is 0. The marpa_g_symbol_is_predicted_event () method returns the current
value of the predicted event marking for symbol sym_id.

Marking a prediction event sets its activation status to on. Unmarking a prediction
event sets its activation status to off. The prediction event marking cannot be changed
once the grammar is precomputed.

If a prediction event is marked, its activation status can be changed using the marpa_
g_prediction_symbol_activate() method. Note that, if a symbol is marked as a
prediction event symbol in the recognizer, its prediction event can be deactivated and
reactivated in the recognizer.

Success: On success, 1 if symbol sym_id is a predicted event symbol after the call, 0
otherwise.

Failures: If sym_id is well-formed, but there is no such symbol, —1. If the grammar
g is precomputed; or on other failure, —2.

20.6 Symbol expected events

int marpa_r_expected_symbol_event_set (Marpa_Recognizer r, [Function]
Marpa_Symbol_ID symbol_id, int value)
Sets the “expected symbol event bit” for symbol_id to value. A recognizer event is
created whenever symbol symbol_id is expected at the current earleme. if and only if
the expected symbol event bit for symbol_id is 1. The “expected symbol event bit”
must be 1 or 0.

In this context, “expected” means “expected as a terminal”. Even if a symbol is
predicted at the current earleme, if it is not acceptable as a terminal, it does not
trigger an “expected symbol event”.

By default, the “expected symbol event bit” is 0. It is an error to attempt to set the
“expected symbol event bit” to 1 for a nulling symbol, an inaccessible symbol, or an
unproductive symbol.

Return value: The value of the event bit after the method call is finished. -2 if
symbol_id is not the ID of a valid symbol; if it is the ID of an nulling, inaccessible for
unproductive symbol; or on other failure.

Chapter 20: Events 62

20.7 Event codes

int

int

int

int

int

int

int

int

MARPA_EVENT_NONE [Macro]
Applications should never see this event. Event value: Undefined. Suggested message:
"No event".

MARPA_EVENT_COUNTED_NULLABLE [Macro]
A nullable symbol is either the separator for, or the right hand side of, a sequence.
Event value: The ID of the symbol. Suggested message: "This symbol is a counted
nullable".

MARPA_EVENT_EARLEY_ITEM_THRESHOLD [Macro]
This event indicates that an application-settable threshold on the number of Earley
items has been reached or exceeded. See [marpa_r_earley_item_warning_threshold_set],
page 39.

Event value: The current Earley item count. Suggested message: "Too many Earley
items".

MARPA_EVENT_EXHAUSTED [Macro]
The parse is exhausted. Event value: Undefined. Suggested message: "Recognizer is
exhausted".

MARPA_EVENT_LOOP_RULES [Macro]
One or more rules are loop rules — rules that are part of a cycle. Cycles are patho-
logical cases of recursion, in which the same symbol string derives itself a potentially
infinite number of times. Nonetheless, Marpa parses in the presence of these, and it
is up to the application to treat these as fatal errors, something they almost always
will wish to do. Event value: The count of loop rules. Suggested message: "Grammar
contains a infinite loop".

MARPA_EVENT_NULLING_TERMINAL [Macro]
A nulling symbol is also a terminal. Event value: The ID of the symbol. Suggested
message: "This symbol is a nulling terminal".

MARPA_EVENT_SYMBOL_COMPLETED [Macro]
The recognizer can be set to generate an event a symbol is completed using its marpa_
g_symbol_is_completion_event_set() method. (A symbol is "completed" if and
only if any rule with that symbol as its LHS is completed.) This event code indicates
that one of those events occurred. Event value: The ID of the completed symbol.
Suggested message: "Completed symbol".

MARPA_EVENT_SYMBOL_EXPECTED [Macro]

The recognizer can be set to generate an event when a symbol is expected as a
terminal, using its marpa_r_expected_symbol_event_set () method. Note that this
event only triggers if the symbol is expected as a terminal. Predicted symbols which
are not expected as terminals do not trigger this event. This event code indicates that
one of those events occurred. Event value: The ID of the expected symbol. Suggested
message: "FExpecting symbol".

63

int MARPA_EVENT_SYMBOL_NULLED [Macro]
The recognizer can be set to generate an event when a symbol is nulled — that is,
recognized as a zero-length symbol. To set an nulled symbol event, use the recognizer’s
marpa_r_nulled_symbol_event_set() method. This event code indicates that a
nulled symbol event occurred. Event value: The ID of the nulled symbol. Suggested
message: "Symbol was nulled".

int MARPA_EVENT_SYMBOL_PREDICTED [Macro]
The recognizer can be set to generate an event when a symbol is predicted. To set
an predicted symbol event, use the recognizer’s marpa_g_symbol_is_prediction_
event_set () method. Unlike the MARPA_EVENT_SYMBOL_EXPECTED event, the MARPA_
EVENT_SYMBOL_PREDICTED event triggers for predictions of both non-terminals and
terminals. This event code indicates that a predicted symbol event occurred. Event
value: The ID of the predicted symbol. Suggested message: "Symbol was predicted".

64

21 Error methods, macros and codes

21.1 Error methods

Marpa_Error_Code marpa_g_error (Marpa-Grammar g, const [Function]
char** p_error_string)

When a method fails, this method allows the application to read the error code.

p-error_string is reserved for use by the internals. Applications should set it to NULL.

Return value: The last error code from a Libmarpa method. Always succeeds.

Marpa_Error_Code marpa_g_error_clear (Marpa-Grammar g) [Function]
Sets the error code to MARPA_ERR_NONE. Not often used, but now and then it can be
useful to force the error code to a known state.

Return value: MARPA_ERR_NONE. Always succeeds.

21.2 Error Macros

int MARPA_ERRCODE_COUNT [Macro]
The number of error codes. All error codes, whether internal or external, will be
integers, non-negative but strictly less than MARPA_ERRCODE_COUNT.

21.3 External error codes

This section lists the external error codes. These are the only error codes that users of the
Libmarpa external interface should ever see. Internal error codes are in their own section
(Section 21.4 [Internal error codes], page 72).

int MARPA_ERR_NONE [Macro]
No error condition. The error code is initialized to this value. Methods which do not
result in failure sometimes reset the error code to MARPA_ERR_NONE. Numeric value:
0. Suggested message: "No error".

int MARPA_ERR_BAD_SEPARATOR [Macro]
A separator was specified for a sequence rule, but its ID was not that of a valid
symbol. Numeric value: 6. Suggested message: "Separator has invalid symbol ID".

int MARPA_ERR_BEFORE_FIRST_TREE [Macro]
A tree iterator is positioned before the first tree, and it was specified in a context
where that is not allowed. A newly created tree is positioned before the first tree.
To position a newly created tree iterator to the first tree use the marpa_t_next ()
method. Numeric value: 91. Suggested message: "Tree iterator is before first tree".

int MARPA_ERR_COUNTED_NULLABLE [Macro]
A “counted” symbol was found that is also a nullable symbol. A “counted” symbol is
one that appears on the RHS of a sequence rule. If a symbol is nullable, counting its
occurrences becomes difficult. Questions of definition and problems of implementation
arise. At a minimum, a sequence with counted nullables would be wildly ambigious.

Chapter 21: Error methods, macros and codes 65

Sequence rules are simply an optimized shorthand for rules that can also be written
in ordinary BNF. If the equivalent of a sequence of nullables is really what your
application needs, nothing in Libmarpa prevents you from specifying that sequence
with ordinary BNF rules.

Numeric value: 8. Suggested message: "Nullable symbol on RHS of a sequence rule".

int MARPA_ERR_DUPLICATE_RULE [Macro]
This error indicates an attempt to add a BNF rule which is a duplicate of a BNF rule
already in the grammar. Two BNF rules are considered duplicates if

e Both rules have the same left hand symbol, and

e Both rules have the same right hand symbols in the same order.

Duplication of sequence rules, and duplication between BNF rules and sequence rules,
is dealt with by requiring that the LHS of a sequence rule not be the LHS of any other
rule.

Numeric value: 11. Suggested message: "Duplicate rule".

int MARPA_ERR_DUPLICATE_TOKEN [Macro]
This error indicates an attempt to add a duplicate token. A token is a duplicate if
one already read at the same earleme has the same symbol ID and the same length.
Numeric value: 12. Suggested message: "Duplicate token".

int MARPA_ERR_YIM_COUNT [Macro]
This error code indicates that an implementation-defined limit on the number of
Earley items per Earley set was exceedeed. This limit is different from the Earley
item warning threshold, an optional limit on the number of Earley items in an Earley
set, which can be set by the application.

The implementation defined-limit is very large, at least 500,000,000 earlemes. An
application is unlikely ever to see this error. Libmarpa’s use of memory would almost
certainly exceed the implementation’s limits before it occurred. Numeric value: 13.
Suggested message: "Maximum number of Earley items exceeded".

int MARPA_ERR_EVENT_IX_NEGATIVE [Macro]
A negative event index was specified. That is not allowed. Numeric value: 15.
Suggested message: "Negative event index".

int MARPA_ERR_EVENT_IX_0O0B [Macro]
An non-negative event index was specified, but there is no event at that index. Since
the events are in sequence, this means it was too large. Numeric value: 16. Suggested
message: "No event at that index".

int MARPA_ERR_GRAMMAR_HAS_CYCLE [Macro]
The grammar has a cycle — one or more loop rules. This is a recoverable error, al-
though most applications will want to treat it as fatal. For more see the description of
[marpa_g_precompute], page 32. Numeric value: 17. Suggested message: "Grammar
has cycle".

Chapter 21: Error methods, macros and codes 66

int MARPA_ERR_HEADERS_DO_NOT_MATCH [Macro]
This is an internal error, and indicates that Libmarpa was wrongly built. Libmarpa
was compiled with headers which do not match the rest of the code. The solution is
to find a correctly built Libmarpa. Numeric value: 98. Suggested message: "Internal
error: Libmarpa was built incorrectly"

int MARPA_ERR_I_AM_NOT_OK [Macro]
The Libmarpa base grammar is in a "not ok" state. Currently, the only way this can
happen is if Libmarpa memory is being overwritten. Numeric value: 29. Suggested
message: "Marpa is in a not OK state".

int MARPA_ERR_INACCESSIBLE_TOKEN [Macro]
This error code indicates that the token symbol is an inaccessible symbol — one which
cannot be reached from the start symbol.
Since the inaccessibility of a symbol is a property of the grammar, this error code
typically indicates an application error. Nevertheless, a retry at this location, using
another token ID, may succeed. At this writing, the author knows of no uses of this
technique.

Numeric value: 18. Suggested message: "Token symbol is inaccessible".

int MARPA_ERR_INVALID_BOOLEAN [Macro]
A function was called that takes a boolean argument, but the value of that argument
was not either 0 or 1. Numeric value: 22. Suggested message: "Argument is not
boolean".

int MARPA_ERR_INVALID_LOCATION [Macro]
The location (Earley set ID) is not valid. It may be invalid for one of two reasons:

e It is negative, and it is being used as the argument to a method for which that
negative value does not have a special meaning.

e It is after the latest Earley set.

For users of input models other than the standard one, the term “location”, as used
in association with this error code, means Earley set ID or Earley set ordinal. In
the standard input model, this will always be identical with Libmarpa’s other idea of
location, the earleme.

Numeric value: 25. Suggested message: "Location is not valid".

int MARPA_ERR_INVALID_START_SYMBOL [Macro]
A start symbol was specified, but its symbol ID is not that of a valid symbol. Numeric
value: 27. Suggested message: "Specified start symbol is not valid".

int MARPA_ERR_INVALID_ASSERTION_ID [Macro]
A method was called with an invalid assertion ID. This is a assertion ID which not
only does not exist, but cannot exist. Currently that means its value is less than zero.
Numeric value: 96. Suggested message: "Assertion ID is malformed".

int MARPA_ERR_INVALID_RULE_ID [Macro]
A method was called with an invalid rule ID. This is a rule ID which not only does
not exist, but cannot exist. Currently that means its value is less than zero. Numeric
value: 26. Suggested message: "Rule ID is malformed".

Chapter 21: Error methods, macros and codes 67

int

int

int

int

int

int

int

int

int

MARPA_ERR_INVALID_SYMBOL_ID [Macro]
A method was called with an invalid symbol ID. This is a symbol ID which not only
does not exist, but cannot exist. Currently that means its value is less than zero.
Numeric value: 28. Suggested message: "Symbol ID is malformed".

MARPA_ERR_MAJOR_VERSION_MISMATCH [Macro]

There was a mismatch in the major version number between the requested version
of libmarpa, and the actual one. Numeric value: 30. Suggested message: "Libmarpa
major version number is a mismatch".

MARPA_ERR_MICRO_VERSION_MISMATCH [Macro]
There was a mismatch in the micro version number between the requested version of
libmarpa, and the actual one. Numeric value: 31. Suggested message: "Libmarpa
micro version number is a mismatch".

MARPA_ERR_MINOR_VERSION_MISMATCH [Macro]

There was a mismatch in the minor version number between the requested version
of libmarpa, and the actual one. Numeric value: 32. Suggested message: "Libmarpa
minor version number is a mismatch".

MARPA_ERR_NO_EARLEY_SET_AT_LOCATION [Macro]
A non-negative Earley set ID (also called an Earley set ordinal) was specified, but
there is no corresponding Earley set. Since the Earley set ordinals are in sequence,
this means that the specified ID is greater than that of the latest Earley set. Numeric
value: 39. Suggested message: "Earley set ID is after latest Earley set".

MARPA_ERR_NOT_PRECOMPUTED [Macro]

The grammar is not precomputed, and attempt was made to do something with it
that is not allowed for unprecomputed grammars. For example, a recognizer cannot
be created from a grammar until it is precomputed. Numeric value: 34. Suggested
message: "This grammar is not precomputed".

MARPA_ERR_NO_PARSE [Macro]
The application attempted to create a bocage from a recognizer without a parse.
Applications will often want to treat this as a soft error. Numeric value: 41. Suggested
message: "No parse".

MARPA_ERR_NO_RULES [Macro]

A grammar which has no rules is being used in a way that is not allowed. Usually
the problem is that the user is trying to precompute the grammar. Numeric value:
42. Suggested message: "This grammar does not have any rules".

MARPA_ERR_NO_START_SYMBOL [Macro]
The grammar has no start symbol, and an attempt was made to perform an operation
which requires one. Usually the problem is that the user is trying to precompute the
grammar. Numeric value: 43. Suggested message: "This grammar has no start
symbol".

Chapter 21: Error methods, macros and codes 68

int

int

int

int

int

int

int

int

int

MARPA_ERR_NO_SUCH_ASSERTION_ID [Macro]

A method was called with an assertion ID which is well-formed, but the assertion
does not exist. Numeric value: 97. Suggested message: "No assertion with this ID
exists".

MARPA_ERR_NO_SUCH_RULE_ID [Macro]
A method was called with a rule ID which is well-formed, but the rule does not exist.
Numeric value: 89. Suggested message: "No rule with this ID exists".

MARPA_ERR_NO_SUCH_SYMBOL_ID [Macro]
A method was called with a symbol ID which is well-formed, but the symbol does not
exist. Numeric value: 90. Suggested message: "No symbol with this ID exists".

MARPA_ERR_NO_TOKEN_EXPECTED_HERE [Macro]
This error code indicates that no tokens at all were expected at this earleme location.
This can only happen in alternative input models.

Typically, this indicates an application programming error. Retrying input at this
location will always fail. But if the application is able to leave this earleme empty, a
retry at a later location, using this or another token, may succeed. At this writing,
the author knows of no uses of this technique.

Numeric value: 44. Suggested message: "No token is expected at this earleme loca-
tion".

MARPA_ERR_NOT_A_SEQUENCE [Macro]
This error occurs in situations where a rule is required to be a sequence, and indicates
that the rule of interest is, in fact, not a sequence.

Numeric value: 99. Suggested message: "Rule is not a sequence".

MARPA_ERR_NULLING_TERMINAL [Macro]
Marpa does not allow a symbol to be both nulling and a terminal. Numeric value:
49. Suggested message: "A symbol is both terminal and nulling".

MARPA_ERR_ORDER_FROZEN [Macro]
The Marpa order object has been frozen. If a Marpa order object is frozen, it cannot
be changed.

Multiple tree iterators can share a Marpa order object, but that order object is frozen
after the first tree iterator is created from it. Applications can order an bocage in
many ways, but they must do so by creating multiple order objects.

Numeric value: 50. Suggested message: "The ordering is frozen".

MARPA_ERR_PARSE_EXHAUSTED [Macro]
The parse is exhausted. Numeric value: 53. Suggested message: "The parse is
exhausted".

MARPA_ERR_PARSE_TOO0_LONG [Macro]

The parse is too long. The limit on the length of a parse is implementation dependent,
but it is very large, at least 500,000,000 earlemes.

Chapter 21: Error methods, macros and codes 69

int

int

int

int

int

int

int

int

This error code is unlikely in the standard input model. Almost certainly memory
would be exceeded before it could occur. If an application sees this error, it almost
certainly using one of the non-standard input models.

Most often this message will occur because of a request to add a single extremely long
token, perhaps as a result of an application error. But it is also possible this error
condition will occur after the input of a large number of long tokens.

Numeric value: 54. Suggested message: "This input would make the parse too long".

MARPA_ERR_POINTER_ARG_NULL [Macro]
In a method which takes pointers as arguments, one of the pointer arguments is NULL,
in a case where that is not allowed. One such method is marpa_r_progress_item().
Numeric value: 56. Suggested message: "An argument is null when it should not be".

MARPA_ERR_PRECOMPUTED [Macro]
An attempt was made to use a precomputed grammar in a way that is not allowed.
Often this is an attempt to change the grammar. Nearly every change to a grammar
after precomputation invalidates the precomputation, and is therefore not allowed.
Numeric value: 57. Suggested message: "This grammar is precomputed".

MARPA_ERR_PROGRESS_REPORT_NOT_STARTED [Macro]
No recognizer progress report is currently active, and an action has been attempted
which is inconsistent with that. One such action would be a marpa_r_progress_
item() call. Numeric value: 59. Suggested message: "No progress report has been
started".

MARPA_ERR_PROGRESS_REPORT_EXHAUSTED [Macro]
The progress report is “exhausted” — all its items have been iterated through. Nu-
meric value: 58. Suggested message: "The progress report is exhausted".

MARPA_ERR_RANK_TOO_LOW [Macro]
A symbol or rule rank was specified which was less than an implementation-defined
minimum. Implementations will always allow at least those ranks in the range between
—134,217,727 and 134,217,727. Numeric value: 85. Suggested message: "Rule or
symbol rank too low".

MARPA_ERR_RANK_TOO_HIGH [Macro]
A symbol or rule rank was specified which was greater than an implementation-
defined maximum. Implementations will always allow at least those ranks in the
range between —134,217,727 and 134,217,727. Numeric value: 86. Suggested message:
"Rule or symbol rank too high".

MARPA_ERR_RECCE_IS_INCONSISTENT [Macro]

The recognizer is “inconsistent”, usually because the user has rejected one or more
rules or terminals, and has not yet called the marpa_r_consistent () method. Nu-
meric value: 95. Suggested message: "The recognizer is inconsistent.

MARPA_ERR_RECCE_NOT_ACCEPTING_INPUT [Macro]

The recognizer is not accepting input, and the application has attempted something
that is inconsistent with that fact. Numeric value: 60. Suggested message: "The
recognizer is not accepting input".

Chapter 21: Error methods, macros and codes 70

int

int

int

int

int

int

int

int

int

MARPA_ERR_RECCE_NOT_STARTED [Macro]

The recognizer has not been started. and the application has attempted something
that is inconsistent with that fact. Numeric value: 61. Suggested message: "The
recognizer has not been started".

MARPA_ERR_RECCE_STARTED [Macro]
The recognizer has been started. and the application has attempted something that is
inconsistent with that fact. Numeric value: 62. Suggested message: "The recognizer
has been started".

MARPA_ERR_RHS_IX_NEGATIVE [Macro]
The index of a RHS symbol was specified, and it was negative. That is not allowed.
Numeric value: 63. Suggested message: "RHS index cannot be negative".

MARPA_ERR_RHS_TIX_00B [Macro]

A non-negative index of RHS symbol was specified, but there is no symbol at that
index. Since the indexes are in sequence, this means the index was greater than or
equal to the rule length. Numeric value: 64. Suggested message: "RHS index must
be less than rule length".

MARPA_ERR_RHS_TOO_LONG [Macro]
An attempt was made to add a rule with too many right hand side symbols. The
limit on the RHS symbol count is implementation dependent, but it is very large,
at least 500,000,000 symbols. This is far beyond what is required in any current
practical grammar. An application with rules of this length is almost certain to run
into memory and other limits. Numeric value: 65. Suggested message: "The RHS is
too long".

MARPA_ERR_SEQUENCE_LHS_NOT_UNIQUE [Macro]
The LHS of a sequence rule cannot be the LHS of any other rule, whether a sequence
rule or a BNF rule. An attempt was made to violate this restriction. Numeric value:
66. Suggested message: "LHS of sequence rule would not be unique".

MARPA_ERR_START_NOT_LHS [Macro]

The start symbol is not on the LHS on any rule. That means it could never match
any possible input, not even the null string. Presumably, an error in writing the
grammar. Numeric value: 73. Suggested message: "Start symbol not on LHS of any
rule".

MARPA_ERR_SYMBOL_IS_NOT_COMPLETION_EVENT [Macro]
An attempt was made to use a symbol in a way that requires it to be set up for
completion events, but the symbol was not set set up for completion events. The
archetypal case is an attempt to activate completion events for the symbol in the
recognizer. The archetypal case is an attempt to activate a completion event in the
recognizer for a symbol that is not set up as a completion event. Numeric value: 92.
Suggested message: "Symbol is not set up for completion events".

MARPA_ERR_SYMBOL_IS_NOT_NULLED_EVENT [Macro]
An attempt was made to use a symbol in a way that requires it to be set up for nulled
events, but the symbol was not set set up for nulled events. The archetypal case is

Chapter 21: Error methods, macros and codes 71

int

int

int

int

int

int

int

int

an attempt to activate a nulled events in the recognizer for a symbol that is not set
up as a nulled event. Numeric value: 93. Suggested message: "Symbol is not set up
for nulled events".

MARPA_ERR_SYMBOL_IS_NOT_PREDICTION_EVENT [Macro]
An attempt was made to use a symbol in a way that requires it to be set up for
predictino events, but the symbol was not set set up for predictino events. The
archetypal case is an attempt to activate a prediction event in the recognizer for
a symbol that is not set up as a prediction event. Numeric value: 94. Suggested
message: "Symbol is not set up for prediction events".
MARPA_ERR_SYMBOL_VALUED_CONFLICT [Macro]
Unvalued symbols are a deprecated Marpa feature, which may be avoided with the
marpa_g_force_valued() method. An unvalued symbol may take on any value,
and therefore a symbol which is unvalued at some points cannot safely to be used
to contain a value at others. This error indicates that such an unsafe use is being
attempted. Numeric value: 74. Suggested message: "Symbol is treated both as
valued and unvalued".

MARPA_ERR_TERMINAL_IS_LOCKED [Macro]
An attempt was made to change the terminal status of a symbol to a different value
after it was locked. Numeric value: 75. Suggested message: "The terminal status of
the symbol is locked".

MARPA_ERR_TOKEN_IS_NOT_TERMINAL [Macro]
A token was specified whose symbol ID is not a terminal. Numeric value: 76. Sug-
gested message: "Token symbol must be a terminal".

MARPA_ERR_TOKEN_LENGTH_LE_ZERO [Macro]
A token length was specified which is less than or equal to zero. Zero-length tokens
are not allowed in Libmarpa. Numeric value: 77. Suggested message: "Token length
must greater than zero".

MARPA_ERR_TOKEN_TOO_LONG [Macro]
The token length is too long. The limit on the length of a token is implementation
dependent, but it is at least 500,000,000 earlemes. An application using a token that
long is almost certain to run into some other limit. Numeric value: 78. Suggested
message: "Token is too long".

MARPA_ERR_TREE_EXHAUSTED [Macro]
A Libmarpa parse tree iterator is “exhausted”, that is, it has no more parses. Numeric
value: 79. Suggested message: "Tree iterator is exhausted".

MARPA_ERR_TREE_PAUSED [Macro]

A Libmarpa tree is “paused” and an operation was attempted which is inconsistent
with that fact. Typically, this operation will be a call of the marpa_t_next () method.
Numeric value: 80. Suggested message: "Tree iterator is paused".

Chapter 21: Error methods, macros and codes 72

int MARPA_ERR_UNEXPECTED_TOKEN_ID [Macro]
An attempt was made to read a token where a token with that symbol ID is not
expected. This message can also occur when an attempt is made to read a token
at a location where no token is expected. Numeric value: 81. Suggested message:
"Unexpected token".

int MARPA_ERR_UNPRODUCTIVE_START [Macro]
The start symbol is unproductive. That means it could never match any possible
input, not even the null string. Presumably, an error in writing the grammar. Numeric
value: 82. Suggested message: "Unproductive start symbol".

int MARPA_ERR_VALUATOR_INACTIVE [Macro]
The valuator is inactive in a context where that should not be the case. Numeric
value: 83. Suggested message: "Valuator inactive".

int MARPA_ERR_VALUED_IS_LOCKED [Macro]
Unvalued symbols are a deprecated Marpa feature, which may be avoided with the
marpa_g_force_valued() method. This error code indicates that the valued status
of a symbol is locked, and an attempt was made to change it to a status different
from the current one. Numeric value: 84. Suggested message: "The valued status of
the symbol is locked".

int MARPA_ERR_SYMBOL_IS_NULLING [Macro]
An attempt was made to do something with a nulling symbol that is not allowed. For
example, the ID of a nulling symbol cannot be an argument to marpa_r_expected_

symbol_event_set() — because it is not possible to create an “expected symbol”
event for a nulling symbol. Numeric value: 87. Suggested message: "Symbol is
nulling".

int MARPA_ERR_SYMBOL_IS_UNUSED [Macro]

An attempt was made to do something with an unused symbol that is not allowed. An
“unused” symbol is a inaccessible or unproductive symbol. For example, the ID of a
unused symbol cannot be an argument to marpa_r_expected_symbol_event_set ()
— because it is not possible to create an “expected symbol” event for an unused
symbol. Numeric value: 88. Suggested message: "Symbol is not used".

21.4 Internal error codes

An internal error code may be one of two things: First, it can be an error code which arises
from an internal Libmarpa programming issue (in other words, something happening in
the code that was not supposed to be able to happen.) Second, it can be an error code
which only occurs when a method from Libmarpa’s internal interface is used. Both kinds of
internal error message share one common trait — users of the Libmarpa’s external interface
should never see them.

Internal error messages require someone with knowledge of the Libmarpa internals to
follow up on them. They usually do not have descriptions or suggested messages.

int MARPA_ERR_AHFA_TIX_NEGATIVE [Macro]
Numeric value: 1.

Chapter 21: Error methods, macros and codes 73

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

MARPA_ERR_AHFA_IX_00B [Macro]
Numeric value: 2.

MARPA_ERR_ANDID_NEGATIVE [Macro]
Numeric value: 3.

MARPA_ERR_ANDID_NOT_IN_OR [Macro]
Numeric value: 4.

MARPA_ERR_ANDIX_NEGATIVE [Macro]
Numeric value: 5.

MARPA_ERR_BOCAGE_ITERATION_EXHAUSTED [Macro]
Numeric value: 7.

MARPA_ERR_DEVELOPMENT [Macro]
"Development" errors were used heavily during Libmarpa’s development, when it was
not yet clear how precisely to classify every error condition. Unless they are using
a developer’s version, users of the external interface should never see development
errors.

Development errors have an error string associated with them. The error string is a
short 7-bit ASCII error string which describes the error. Numeric value: 9. Suggested
message: "Development error, see string".

MARPA_ERR_DUPLICATE_AND_NODE [Macro]
Numeric value: 10.

MARPA_ERR_YIM_ID_INVALID [Macro]
Numeric value: 14.

MARPA_ERR_INTERNAL [Macro]
A “catchall” internal error. Numeric value: 19.

MARPA_ERR_INVALID_AHFA_ID [Macro]
The AHFA ID was invalid. There are no AHFAs any more, so this message should
not occur. Numeric value: 20.

MARPA_ERR_INVALID_AIMID [Macro]
The AHM ID was invalid. The term “AIMID” is a legacy of earlier implementations
and must be kept for backward compatibility. Numeric value: 21.

MARPA_ERR_INVALID_IRLID [Macro]
Numeric value: 23.

MARPA_ERR_INVALID_NSYID [Macro]
Numeric value: 24.

MARPA_ERR_NOOKID_NEGATIVE [Macro]
Numeric value: 33.

MARPA_ERR_NOT_TRACING_COMPLETION_LINKS [Macro]
Numeric value: 35.

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

MARPA_ERR_NOT_TRACING_LEO_LINKS
Numeric value: 36.

MARPA_ERR_NOT_TRACING_TOKEN_LINKS
Numeric value: 37.

MARPA_ERR_NO_AND_NODES
Numeric value: 38.

MARPA_ERR_NO_OR_NODES
Numeric value: 40.

MARPA_ERR_NO_TRACE_YS
Numeric value: 46.

MARPA_ERR_NO_TRACE_PIM
Numeric value: 47.

MARPA_ERR_NO_TRACE_YIM
Numeric value: 45.

MARPA_ERR_NO_TRACE_SRCL
Numeric value: 48.

MARPA_ERR_ORID_NEGATIVE
Numeric value: 51.

MARPA_ERR_OR_ALREADY_ORDERED

Numeric value: 52.

MARPA_ERR_PIM_IS_NOT_LIM

Numeric value: 55.

MARPA_ERR_SOURCE_TYPE_IS_NONE
Numeric value: 70.

MARPA_ERR_SOURCE_TYPE_IS_TOKEN
Numeric value: 71.

MARPA_ERR_SOURCE_TYPE_IS_COMPLETION
Numeric value: 68.

MARPA_ERR_SOURCE_TYPE_IS_LEO
Numeric value: 69.

MARPA_ERR_SOURCE_TYPE_IS_AMBIGUOUS
Numeric value: 67.

MARPA_ERR_SOURCE_TYPE_IS_UNKNOWN
Numeric value: 72.

74

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

75

22 Technical notes

This section contains technical notes that are not necessary for the main presentation, but
which may be useful or interesting.

22.1 Data types used by Libmarpa

Libmarpa does not use any floating point data or strings. All data are either integers or
pointers.

22.2 Why so many time objects?

Marpa is an aggressively multi-pass algorithm. Marpa achieves its efficiency, not in spite of
making multiple passes over the data, but because of it. Marpa regularly substitutes two
fast O(n) passes for a single O(n log n) pass. Marpa’s proliferation of time objects is in
keeping with its multi-pass approach.

Bocage objects come at no cost, even for unambiguous parses, because the same pass
which creates the bocage also deals with other issues which are of major significance for
unambiguous parses. It is the post-processing of the bocage pass that enables Marpa to do
both left- and right-recursion in linear time.

Of the various objects, the best case for elimination is of the ordering object. In many
cases, the ordering is trivial. Either the parse is unambiguous, or the application does not
care about the order in which parses are returned. But while it would be easy to add an
option to bypass creation of an ordering object, there is little to be gained from it. When
the ordering is trivial, its overhead is very small — essentially a handful of subroutine calls.
Many orderings accomplish nothing, but these cost next to nothing.

Tree objects come at minimal cost to unambiguous grammars, because the same pass
that allows iteration through multiple parse trees does the tree traversal. This eliminates
much of the work that otherwise would need to be done in the valuation time object. In
the current implement, the valuation time object needs only to step through a sequence
already determined in the tree iterator.

22.3 Numbered objects

As the name suggests, the choice was made to implement numbered objects as integers,
and not as pointers. In standard-conformant C, integers can be safely checked for validity,
while pointers cannot.

There are efficiency tradeoffs between pointers and integers but they are complicated,
and they go both ways. Pointers can be faster, but integers can be used as indexes into
more than one data structure. Which is actually faster depends on the design. Integers
allow for a more flexible design, so that once the choice is settled on, careful programming
can make them a win, possibly a very big one.

The approach taken in Libmarpa was to settle, from the outset, on integers as the
implementation for numbered objects, and to optimize on that basis. The author concedes
that it is possible that others redoing Libmarpa from scratch might find that pointers are
faster. But the author is confident that they will also discover, on modern architectures,

Chapter 22: Technical notes 76

that the lack of safe validity checking is far too high a price to pay for the difference in
speed.

22.4 LHS terminals

Marpa’s idea in losing the sharp division between terminals and non-terminals is that the
distinction, while helpful for proving theorems, is not essential in practice. LHS symbols in
the input might be useful for “short circuiting” the rules in which they occur. This may
prove helpful in debugging, or have other applications.

However, it also can be useful, for checking input validity as well as for efficiency, to follow
tradition and distinguish non-terminals from terminals. For this reason, the traditional
behavior is the default in Libmarpa.

7

23 Advanced input models

In an earlier chapter, we introduced Libmarpa’s concept of input, and described its ba-
sic input models. See Chapter 5 [Input], page 7. In this chapter we describe Libmarpa’s
advanced models of input. These advanced input models have attracted considerable inter-
est. However, they have seen little actual use so far, and for that reason we delayed their
consideration until now.

A Libmarpa input model is advanced if it allows tokens of length other than 1. The
advanced input models are also called variable-length token models because they allow the
token length to vary from the “normal” length of 1.

23.1 The dense variable-length token model

In the dense variable-length model of input, one or more successful calls of
marpa_r_alternative() must be immediately previous to every call to marpa_r_
earleme_complete(). Note that, for a variable-length input model to be “dense”
according to this definition, at least one successful call of marpa_r_alternative() must
be immediately previous to each call to marpa_r_earleme_complete(). Recall that, in
this document, we say that a marpa_r_alternative() call is “immediately previous” to a
marpa_r_earleme_complete () call iff that marpa_r_earleme_complete() call is the first
marpa_r_earleme_complete() call after the marpa_r_alternative() call.

In the dense model of input, after a successful call of marpa_r_alternative(), the
earleme variables are as follows:

e The furthest earleme will be max(old_f, old_c+length),
e where old_f is the furthest earleme before the call to marpa_r_alternative(),

e old_c is the value of the current earleme before the call to marpa_r_
alternative(), and

e length is the length of the token read.

e marpa_r_alternative() never changes the latest or current earleme.

In the dense variable-length model of input, the effect of the marpa_r_earleme_
complete () mutator on the earleme variables is the same as for the basic models of input.
See Section 5.2.1 [The standard model of input], page 8.

In the dense model of input, the latest earleme is always the same as the current earleme.
In fact, the latest earleme and the current earleme are always the same, except in the fully
general model of input.

23.2 The fully general input model

In the sparse variable-length model of input, zero or more successful calls of
marpa_r_alternative() must be immediately previous to every call to marpa_r_
earleme_complete(). The sparse model is the dense variable-length model, with
its only restriction lifted — the sparse variable-length input model allows calls
to marpa_r_earleme_complete() that are not immediately preceded by calls to
marpa_r_alternative().

78

Since it is unrestricted, the sparse input model is Libmarpa’s fully general input model.
Because of this, it may be useful for us specify the effect of mutators on the earleme variables
in detail, even at the expense of some repetition.

In the sparse input model, empty earlemes are now possible. An empty earleme is
an earleme with no tokens and no Earley set. An empty earleme occurs iff marpa_r_
earleme_complete() is called when there is no immediately previous call to marpa_r_
alternative(). The sparse model takes its name from the fact that there may be earlemes
with no Earley set. In the sparse model, Earley sets are “sparsely” distributed among the
earlemes.

In the dense model of input, the effect on the earleme variables of a successful call of the
marpa_r_alternative() mutator is the same as for the sparse model of input:

e The furthest earleme will be max(old_f, old_c+length),
e where old_f is the furthest earleme before the call to marpa_r_alternative(),

e old_c is the wvalue of the current earleme before the call to marpa_r_
alternative(), and

e length is the length of the token read.
e marpa_r_alternative() never changes the latest or current earleme.
In the sparse model, when the earleme is not empty, the effect of a call to marpa_r_

earleme_complete() on the earleme variables is the same as in the dense and the basic
models of input. Specifically, the following will be true:

e The current earleme will be advanced to old_c+1, where old_c is the current earleme
before the call.

e The latest earleme will be o1d_c+1, and therefore will be equal to the current earleme.
e The value of the furthest earleme is never changed by a call to marpa_r_earleme_
complete().

Recall that, in the dense and basic input models, as a matter of definition, there are no
empty earlemes. For the sparse input model, in the case of an empty earleme, the effect of
the marpa_r_earleme_complete () mutator on the earleme variables is the following;:

e The current earleme will be advanced to old_c+1, where old_c is the current earleme
before the call.

e The latest earleme will remain at old_I, where the latest earleme before the call is old_1.
This implies that the latest earleme will be less than the current earleme.

e The furthest earleme is never changed by a call to marpa_r_earleme_complete().
After a call to marpa_r_earleme_complete() for an empty earleme, the lastest and

current earlemes will have different values. In a parse that never calls marpa_r_earleme_
complete () for an empty earleme, the lastest and current earlemes will always be the same.

79

24 Futures

This chapter discusses features that are not in the external interface, but that might be
added to the external interface in the future.

24.1 Orthogonal treatment of exhaustion

The treatment of parse exhaustion is very awkward. marpa_r_start_input() returns
success on exhaustion, while marpa_r_earleme_complete() either returns success or a
hard failure, depending on circumstances. See [marpa_r_earleme_complete]|, page 36, and
[marpa_r_start_input], page 34.

Ideally the treatment should be simpler, more intuitive and more orthogonal. Better,
perhaps, would be to always treat parse exhaustion as a soft failure.

24.2 Furthest earleme values

marpa_r_furthest_earleme returns unsigned int which is non-orthogonal with marpa_
r_current_earleme. This leaves no room for an failure return value, which we deal with
by not checking for failures, of which the only important one is calling marpa_r_furthest_
earleme before the start of input. To consider marpa_r_furthest_earleme we consider
furthese earleme to have been initialized when the recognizer was created, which is another
non-orthogonality with marpa_r_current_earleme.

All this might be fine, if something were gained, but in fact in the furthest earleme, unless
there is a problem, always becomes the current earleme, and no use cases for extremely long
variable-length tokens are envisioned, so that the two should never be far apart. Addition-
ally, the additional values for the furthest earleme only come into play if the parse is to large
for the computer memories as of this writing. Summarizing, marpa_r_furthest_earleme,
should return an int, like marpa_r_current_earleme, and the non-orthogonalities should
be eliminated.

24.3 Additional recoverable failures in marpa_r_alternative()

Among the hard failures that marpa_r_alternative() returns are the error codes MARPA_ERR_
DUPLICATE_TOKEN, MARPA_ERR_NO_TOKEN_EXPECTED_HERE and MARPA_ERR_INACCESSIBLE_
TOKEN. These are currently irrecoverable. They may in fact be fully recoverable, but are
not documented as such because this has not been tested.

At this writing, we know of no applications which attempt to recover from these errors.
It is possible that these error codes may also be useable for the techniques similar to the
Ruby Slippers, as of this writing, we know of no proposals to use them in this way.

24.4 Untested methods

The methods of this section are not in the external interface, because they have not been
adequately tested. Their fate is uncertain. Users should regard these methods as unsup-
ported.

Chapter 24: Futures 80

24.4.1 Ranking methods

Marpa_Rank marpa_g_default_rank_set (Marpa-Grammar g, [Function]
Marpa_Rank rank)
Marpa_Rank marpa_g_default_rank (Marpa_Grammar g) [Function]

These methods, respectively, set and query the default rank of the grammar. When a
grammar is created, the default rank is 0. When rules and symbols are created, their
rank is the default rank of the grammar.

Changing the grammar’s default rank does not affect those rules and symbols already
created, only those that will be created. This means that the grammar’s default rank
can be used to, in effect, assign ranks to groups of rules and symbols. Applications
may find this behavior useful.

Return value: On success, returns the rank after the call, and sets the error code to
MARPA_ERR_NONE. On failure, returns —2, and sets the error code to an appropriate
value, which will never be MARPA_ERR_NONE. Note that when the rank is —2, the
error code is the only way to distinguish success from failure. The error code can be
determined by using the marpa_g_error () call.

Marpa_Rank marpa_g_symbol_rank_set (Marpa.Grammar g, [Function]
Marpa_Symbol_ID sym_id, Marpa_Rank rank)
Marpa_Rank marpa_g_symbol_rank (Marpa_Grammar g, [Function]

Marpa_Symbol_ID sym_id)
These methods, respectively, set and query the rank of a symbol sym_id. When
sym_id is created, its rank initialized to the default rank of the grammar.

Return value: On success, returns the rank after the call, and sets the error code to
MARPA_ERR_NONE. On failure, returns —2, and sets the error code to an appropriate
value, which will never be MARPA_ERR_NONE. Note that when the rank is —2, the
error code is the only way to distinguish success from failure. The error code can be
determined by using the marpa_g_error () call.

24.4.2 Zero-width assertion methods

Marpa_Assertion_ID marpa_g_zwa_new (Marpa_Grammar g, int [Function]
default_value)

int marpa_g_zwa_place (Marpa-Grammar g, Marpa_Assertion_I1D [Function]
zwaid, Marpa_Rule_ID xrl_id, int rhs_ix)

int marpa_r_zwa_default (Marpa_Recognizer r, [Function]
Marpa_Assertion_ID zwaid)
On success, returns previous default value of the assertion.

int marpa_r_zwa_default_set (Marpa_Recognizer r, [Function]
Marpa_Assertion_ID zwaid, int default_value)
Changes default value to default_value. On success, returns previous default value of
the assertion.

Marpa_Assertion_ID marpa_g_highest_zwa_id (Marpa-Grammar [Function]
g)

Chapter 24: Futures 81

24.4.3 Methods for revising parses

Marpa allows an application to “change its mind” about a parse, rejected rule previously
recognized or predicted, and terminals previously scanned. The methods in this section
provide that capability.

Marpa_Earleme marpa_r_clean (Marpa_Recognizer r) [Function]

82

25 Deprecated techniques and methods

25.1 Valued and unvalued symbols

25.1.1 What unvalued symbols were

Libmarpa symbols can have values, which is the traditional way of doing semantics. Lib-
marpa also allows symbols to be unvalued. An unvalued symbol is one whose value is
unpredictable from instance to instance. If a symbol is unvalued, we sometimes say that it
has “whatever” semantics.

Situations where the semantics can tolerate unvalued symbols are surprisingly frequent.
For example, the top-level of many languages is a series of major units, all of whose semantics
are typically accomplished via side effects. The compiler is typically indifferent to the actual
value produced by these major units, and tracking them is a waste of time. Similarly, the
value of the separators in a list is typically ignored.

Rules are unvalued if and only if their LHS symbols are unvalued. When rules and
symbols are unvalued, Libmarpa optimizes their evaluation.

It is in principle unsafe to check the value of a symbol if it can be unvalued. For this
reason, once a symbol has been treated as valued, Libmarpa marks it as valued. Similarly,
once a symbol has been treated as unvalued, Libmarpa marks it as unvalued. Once marked,
a symbol’s valued status is locked and cannot be changed later.

The valued status of terminals is marked the first time they are read. The valued status
of LHS symbols must be explicitly marked by the application when initializing the valuator
— this is Libmarpa’s equivalent of registering a callback.

LHS terminals are disabled by default. If allowed, the user should be aware that the
valued status of a LHS terminal will be locked in the recognizer if it is used as a terminal,
and the symbol’s use as a rule LHS in the valuator must be consistent with the recognizer’s
marking.

Marpa reports an error when a symbol’s use conflicts with its locked valued status. Doing
so usually saves the Libmarpa user some tricky debugging further down the road.

25.1.2 Grammar methods dealing with unvalued symbols

int marpa_g_symbol_is_valued_set (Marpa.Grammar g, [Function]
Marpa_Symbol_ID symbol_id, int value)
int marpa_g_symbol_is_valued (Marpa-Grammar g, [Function]

Marpa_Symbol_ID symbol_id)
These methods, respectively, set and query the “valued status” of a symbol. Once set
to a value with the marpa_g_symbol_is_valued_set () method, the valued status of
a symbol is “locked” at that value. It cannot thereafter be changed. Subsequent calls
to marpa_g_symbol_is_valued_set () for the same sym_id will fail, leaving sym_id’s
valued status unchanged, unless value is the same as the locked-in value.
Return value: On success, 1 if the symbol symbol_id is valued after the call, 0 if not.

If the valued status is locked and value is different from the current status, —2. If
value is not 0 or 1; or on other failure, —2.

Chapter 25: Deprecated techniques and methods 83

25.1.3 Registering semantics in the valuator

By default, Libmarpa’s valuator objects assume that non-terminal symbols have no seman-
tics. The archetypal application will need to register symbols that contain semantics. The
primary method for doing this is marpa_v_symbol_is_valued (). Applications will typically
register semantics by rule, and these applications will find the marpa_v_rule_is_valued()
method more convenient.

int marpa_v_symbol_is_valued_set (Marpa_Value v, [Function]
Marpa_Symbol_ID sym_id, int status)
int marpa_v_symbol_is_valued (Marpa-Value v, [Function]

Marpa_Symbol_ID sym_id)
These methods, respectively, set and query the valued status of symbol sym_id.
marpa_v_symbol_is_valued_set () will set the valued status to the value of its sta-
tus argument. A valued status of 1 indicates that the symbol is valued. A valued
status of 0 indicates that the symbol is unvalued. If the valued status is locked, an
attempt to change to a status different from the current one will fail (error code
MARPA_ERR_VALUED_IS_LOCKED).

Return value: On success, the valued status after the call. If value is not either 0 or
1, or on other failure, —2.

int marpa_v_rule_is_valued_set (Marpa_Value v, [Function]
Marpa_Rule_ID rule_id, int status)

int marpa_v_rule_is_valued (Marpa_Value v, Marpa_Rule_ID [Function]
rule_id)

These methods, respectively, set and query the valued status for the LHS symbol of
rule rule_id. marpa_v_rule_is_valued_set() sets the valued status to the value of
its status argument.

A valued status of 1 indicates that the symbol is valued. A valued status of 0 indicates
that the symbol is unvalued. If the valued status is locked, an attempt to change to
a status different from the current one will fail (error code MARPA_ERR_VALUED_IS_
LOCKED).

Rules have no valued status of their own. The valued status of a rule is always that
of its LHS symbol. These methods are conveniences — they save the application the
trouble of looking up the rule’s LHS.

Return value: On success, the valued status of the rule rule_id’s LHS symbol after
the call. If value is not either 0 or 1, or on other failure, —2.

int marpa_v_valued_force (Marpa-Value v) [Function]
This methods locks the valued status of all symbols to 1, indicated that the symbol
is valued. If this is not possible, for example because one of the grammar’s symbols
already is locked at a valued status of 0, failure is returned.

Return value: On success, a non-negative number. On failure, returns —2, and sets
the error code to an appropriate value, which will never be MARPA_ERR_NONE.

Index of terms

84

This index is of terms that are used in a special sense in this document. Not every use of
these terms is indexed — only those uses which are in some way defining.

A

accessiblerule i 26
accessible symbolo o oo 24
active parse. ...ttt 10
advanced input model................. s
advanced models of input 8
application.o i 2
application behaviorl 3
applications, exhaustion-hating................. 10
applications, exhaustion-loving 10
archetypal Libmarpa application 19

B

base grammar (of a time object) 5
basic models of input 8
behavior, application............... 3
behavior, diagnostic...........ol 3
boolean......... ..o 2
boolean value............ol 2

C

child object (of a time object) 5
counted symbol 30

D

dense variable-length input model 77
diagnostic behavior oL 3

E

earleme 7
earleme, current........... ... oo, 7
earleme, emptyot 78
earleme, furthest..........o oL 8
earleme, latest i 7
Earley item warning threshold 39
Earley set, latest......... oL 7
empty earleme.........o 78
exhausted parse..............ooi i, 10
exhaustion-hating applications 10

exhaustion-loving applications.................. 10

F

failure 14
failure, fully recoverable hard 17
failure, hard i 15
failure, irrecoverable hard 16
failure, Libmarpa application programming. 14
failure, library-recoverable hard 16
failure, memory allocation...................... 15
failure, partially recoverable hard............... 16
failure, soft......... ... o i 15, 17
failure, undetected 15
frozen ordering......... i 45
fully recoverable hard failure................... 17

H

hard failure........ oo o 15
hard failure, fully recoverable 17
hard failure, irrecoverable...................... 16
hard failure, library-recoverable 16
hard failure, partially recoverable............... 16

|

ID (of an Earley set).................ooooiia... 7
1§ 2
immediately previous (to a
marpa_r_earleme_complete() call) 8
input model, advanced 77
input model, dense variable-length 7
input model, sparse variable-length............. 77
input model, variable-length token 77
input, advanced models of, 8
input, basic models of oL 8
irrecoverable hard failure....................... 16
iterator, parse tree........... ... 47

L

Libmarpa application programming failure 14
Libmarpa application programming success. 14
Libmarpa application, archetypal............... 19
library-recoverable hard failure................. 16
locked value status (of a symbol)............... 82

Index of terms

M

TAX(X,T) « vt ettt e et e 2
memory allocation failur....................... 15
method 2
models of input, advanced....................... 8
models of input, basic................. ... 8

N

nullablerule.........ol 26
nullable symbol 24
nullingrule......... 26
nulling symbol 25

@)

ordering, frozen............. ool 45
ordinal (of an Earley set)........................ 7
OUL &ttt 3

parent object (of a time object) 5
parsetree........o ool 47
parse tree iterator............. ... oo 47
parse, active ... 10
parse, exhausted oo 10
partially recoverable hard failure............... 16
previous (to a marpa_r_earleme_

complete() call), immediately 8
productiverule ool 27
productive symbol 25
proper separationo.eiiiiiii.... 29

R

Ruby Slippers..........ooooiiii 36
rule, accessible.......... ... o il 26
rule, nullable.......... 26
rule, nulling. 26

rule, productive........... ... oo 27

85
S
separation, proper 29
soft failure i 15, 17
sparse variable-length input model 7
SUCCESS « vttt ettt e et et e 14
success, Libmarpa application programming.... 14
symbol, accessible....... i 24
symbol, counted oL 30
symbol, nullable 24
symbol, nulling i 25
symbol, productive............. o 25
symbol, unvalued L 82
T
15 TP 47
U
undetected failure........... oL 15
unvalued symbol.......o 82
TS ettt 3
0TS P 2
\Va
valuator 49
value status, locked (of a symbol) 82
value, booleanl 2
variable-length input model, dense 77
variable-length input model, sparse............. 7
variable-length token input model.............. 7
W ottt 3

	No warranty
	About this document
	How to read this document
	Prerequisites
	Parsing theory
	Terminology and notation
	Application and diagnostic behavior

	About Libmarpa
	Architecture
	Major objects
	Time objects
	Reference counting
	Numbered objects

	Input
	Earlemes
	The traditional input model
	The latest earleme
	The current earleme
	The furthest earleme

	The basic models of input
	The standard model of input
	Ambiguous input

	Terminals

	Exhaustion
	Semantics
	Threads
	Failure
	Libmarpa's approach to failure
	User non-conformity to specified behavior
	Classifying failure
	Memory allocation failure
	Undetected failure
	Irrecoverable hard failure
	Partially recoverable hard failure
	Library-recoverable hard failure
	Fully recoverable hard failure
	Soft failure
	Error codes

	Introduction to the method descriptions
	About the overviews
	Naming conventions
	Return values
	How to read the method descriptions

	Static methods
	Configuration methods
	Grammar methods
	Overview
	Creating a new grammar
	Tracking the reference count of the grammar
	Symbol methods
	Rule methods
	Sequence methods
	Rank methods
	Precomputing the Grammar

	Recognizer methods
	Recognizer overview
	Creating a new recognizer
	Keeping the reference count of a recognizer
	Life cycle mutators
	Location accessors
	Other parse status methods

	Progress reports
	Bocage methods
	Overview
	Creating a new bocage
	Reference counting
	Accessors

	Ordering methods
	Overview
	Creating an ordering
	Reference counting
	Accessors
	Non-default ordering

	Tree methods
	Overview
	Creating a new tree iterator
	Reference counting
	Iterating through the trees

	Value methods
	Overview
	How to use the valuator
	Advantages of step-driven valuation
	Maintaining the stack
	Sizing the stack
	Initializing locations in the stack

	Creating a new valuator
	Reference counting
	Stepping through the valuator
	Valuator steps by type
	Basic step accessors
	Other step accessors

	Events
	Overview
	Basic event accessors
	Completion events
	Symbol nulled events
	Prediction events
	Symbol expected events
	Event codes

	Error methods, macros and codes
	Error methods
	Error Macros
	External error codes
	Internal error codes

	Technical notes
	Data types used by Libmarpa
	Why so many time objects?
	Numbered objects
	LHS terminals

	Advanced input models
	The dense variable-length token model
	The fully general input model

	Futures
	Orthogonal treatment of exhaustion
	Furthest earleme values
	Additional recoverable failures in marpa_r_alternative()
	Untested methods
	Ranking methods
	Zero-width assertion methods
	Methods for revising parses

	Deprecated techniques and methods
	Valued and unvalued symbols
	What unvalued symbols were
	Grammar methods dealing with unvalued symbols
	Registering semantics in the valuator

	Index of terms

